Colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars isolated from Egyptian chicken carcasses.
The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of β-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health.
One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the β-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes.
Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were β-lactamase producers with the blaTEM as the most predominant β-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively).
The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.
El-Saeed BA
,Elshebrawy HA
,Zakaria AI
,Abdelkhalek A
,Sallam KI
... -
《Annals of Clinical Microbiology and Antimicrobials》
Multi-drug resistant bacteria isolates from lymphatic filariasis patients in the Ahanta West District, Ghana.
Antimicrobial resistance is associated with increased morbidity in secondary infections and is a global threat owning to the ubiquitous nature of resistance genes in the environment. Recent estimate put the deaths associated with bacterial antimicrobial resistance in 2019 at 4.95 million worldwide. Lymphatic filariasis (LF), a Neglected Tropical Disease (NTD), is associated with the poor living in the tropical regions of the world. LF patients are prone to developing acute dermatolymphangioadenitis (ADLA), a condition that puts them at risk of developing secondary bacterial infections due to skin peeling. ADLA particularly worsens the prognosis of patients leading to usage of antibiotics as a therapeutic intervention. This may result in inappropriate usage of antibiotics due to self-medication and non-compliance; exacerbating antimicrobial resistance in LF patients. In this perspective, we assessed the possibilities of antimicrobial resistance in LF patients. We focused on antibiotic usage, antibiotic resistance in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolates and looked at genes (mecA and Extended-spectrum beta-lactamase [blaCTX-M, blaSHV and blaTEM]) coding for resistance in multi-drug resistant (MDR) bacterial isolates.
Of the sixty (60) participants, fifty-four (n = 54, 90%) were within 31-60 years of age, twenty (n = 20, 33.33%) were unemployed and thirty-eight (n = 38, 50.67%) had wounds aged (in months) seven (7) months and above. Amoxicillin (54%) and chloramphenicol (22%) were the most frequently used antibiotics for self-medication. Staphylococcus aureus isolates (n = 26) were mostly resistant to penicillin (n = 23, 88.46%) and least resistant to erythromycin (n = 2, 7.69%). Escherichia coli isolates (n = 5) were resistant to tetracycline (n = 5, 100%) and ampicillin (n = 5, 100%) but were sensitive to meropenem (n = 5, 100%). Pseudomonas aeruginosa isolates (n = 8) were most resistant to meropenem (n = 3, 37.50%) and to a lesser ciprofloxacin (n = 2, 25%), gentamicin (n = 2, 25%) and ceftazidime (n = 2, 25%). Multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA), cephalosporin resistant Escherichia coli. and carbapenem resistant Pseudomonas aeruginosa were four (n = 4, 15.38%), two (n = 2, 40%) and two (n = 2, 25%) respectively. ESBL (blaCTX-M) and mecA genes were implicated in the resistance mechanism of Escherichia coli and MRSA, respectively.
The findings show presence of MDR isolates from LF patients presenting with chronic wounds; thus, the need to prioritize resistance of MDR bacteria into treatment strategies optimizing morbidity management protocols. This could guide antibiotic selection for treating LF patients presenting with ADLA.
Aglomasa BC
,Adu-Asiamah CK
,Asiedu SO
,Kini P
,Amewu EKA
,Boahen KG
,Wireko S
,Amponsah IK
,Boakye YD
,Boamah VE
,Kwarteng A
... -
《BMC MICROBIOLOGY》
Prevalence, multiple antibiotic resistance and virulence profile of methicillin-resistant Staphylococcus aureus (MRSA) in retail poultry meat from Edo, Nigeria.
Staphylococcus aureus causes staphylococcal food poisoning and several difficult-to-treat infections. The occurrence and dissemination of methicillin-resistance S. aureus (MRSA) in Nigeria is crucial and well documented in hospitals. However, findings on MRSA from meat in the country are yet to be adequately reported. The current study determined the prevalence, virulence profile and antibiogram characteristics of MRSA from a raw chicken product from retail outlets within Edo.
A total of 368 poultry meat samples were assessed for MRSA using a standard culture-based approach and characterized further using a molecular method. The antimicrobial susceptibility profile of the isolates was determined using the disc diffusion method. The biofilm profile of the isolates was assayed via the crystal violet microtitre-plate method. Virulence and antimicrobial resistance genes were screened using polymerase chain reaction via specific primers.
Of the samples tested, 110 (29.9%) were positive for MRSA. All the isolates were positive for deoxyribonuclease (DNase), coagulase and beta-hemolysis production. Biofilm profile revealed 27 (24.55%) weak biofilm formers, 18 (16.36%) moderate biofilm formers, and 39 (35.45%) strong biofilm formers. The isolates harboured 2 and ≤17 virulence genes. Enterotoxin gene profiling revealed that 100 (90.9%) isolates harboured one or more genes. Resistance against the tested antibiotics followed the order: tetracycline 64(58.2%), ciprofloxacin 71(64.6%), trimethoprim 71(64.6%) and rifampin 103(93.6%). A total of 89 isolates were multidrug-resistant, while 3 isolates were resistant to all 22 antibiotics tested. The isolates harboured antimicrobial-resistant determinants such as methicillin-resistant gene (mecA), tetracycline resistance genes (tetK, tetL), erythromycin resistance genes (ermA, ermC), trimethoprim resistance gene (dfrK). All the staphylococcal cassette chromosome mec (SCCmec) IVa and SCCmec V positive isolates harboured the Panton-Valentine Leukocidin Gene (PVL).
In conclusion, S. aureus was resistant to commonly used antibiotics; a concern to public health concerning the transmission of these pathogens after consuming these highlight the significance of antimicrobial and enterotoxigenic monitoring of S. aureus in food chains.
Igbinosa EO
,Beshiru A
,Igbinosa IH
,Ogofure AG
,Ekundayo TC
,Okoh AI
... -
《Frontiers in Cellular and Infection Microbiology》