Ripretinib for the treatment of advanced gastrointestinal stromal tumor.
Gastrointestinal stromal tumors (GISTs) are rare tumors of the gastrointestinal (GI) tract yet represent the most common GI sarcomas. Most GISTs are driven by activating mutations of the KIT and/or PDGFRA genes. Prior to the development of tyrosine kinase inhibitors (TKIs), GISTs were associated with a poor prognosis because conventional cytotoxic chemotherapy was relatively ineffective. However, TKIs that inhibit the most common driver mutations in KIT or PDGFRA have revolutionized the treatment of GISTs over the past two decades. Notwithstanding, ongoing management challenges relate to the development of secondary mutations in these genes, resulting in tumor progression. Due to both the intra- and inter-patient heterogeneity of these secondary mutations in GISTs, optimal treatment requires an agent that blocks as many mutant genes as possible. Ripretinib - a novel switch-control TKI - inhibits many of the most common primary and secondary activating KIT and PDGFRA mutants involved in GIST progression through a dual mechanism of action. In the pivotal INVICTUS phase III trial, patients with advanced GIST that had progressed on at least imatinib, sunitinib, and regorafenib and who received ripretinib experienced significantly longer progression-free survival (primary endpoint) as well as prolongation of overall survival, compared with those receiving placebo. Treatment with ripretinib was associated with durable improvements in quality-of-life indices and a manageable toxicity profile. The most frequent side effects were common to the class of TKIs used in the management of GIST. These results led to the approval of ripretinib for treatment of advanced GIST in adults who have received three or more TKIs, including imatinib. Ripretinib is also under investigation in the second-line treatment of advanced GIST in a phase III trial (INTRIGUE) comparing ripretinib with sunitinib in patients with advanced GIST after treatment with imatinib.
Use of ripretinib for the treatment of gastrointestinal stromal tumors (GISTs) Gastrointestinal stromal tumors (GISTs) are a rare type of tumor most commonly located in the stomach and small intestine but can develop anywhere throughout the gastrointestinal tract. The symptoms of GISTs vary in extent depending on location of the primary tumor and include a feeling of fullness, abdominal pain, intestinal bleeding, and fatigue. Since these symptoms are nonspecific, making a diagnosis can be challenging. Most GISTs carry initial mutations in genes that control specific enzymes called tyrosine kinases. Historically, treatment of GISTs was limited because traditional chemotherapy is ineffective against these tumors. However, with the introduction of drugs that inhibit tyrosine kinases [i.e., tyrosine kinase inhibitors (TKIs)], survival has been extended substantially. However, many GISTs go on to develop secondary mutations that render them resistant to a given TKI. Prior to the approval of ripretinib, four TKIs were available for the treatment of GIST: imatinib; sunitinib; regorafenib; and, recently, avapritinib. Each drug is used until resistance develops or patients are unable to tolerate the side effects of treatment, after which the next drug is started. Ripretinib was recently approved by the FDA as the fourth drug in the usual treatment sequence recommended for patients with advanced GIST who have progressed (or are treatment intolerant) after receiving three or more TKIs, including imatinib. Approval of ripretinib was based on the results of the INVICTUS trial, which demonstrated that the drug significantly improves the time patients have without progression of the disease or death compared with placebo. The most common side effects related to ripretinib were hair loss, muscle pain, nausea, fatigue, hand-foot syndrome, and diarrhea, although most events were not very severe. Ripretinib is being further studied as the second TKI used in patients with GIST who have progressed on or could not tolerate first-line treatment with imatinib.
Zalcberg JR
《-》
Molecular Portrait of GISTs Associated With Clinicopathological Features: A Retrospective Study With Molecular Analysis by a Custom 9-Gene Targeted Next-Generation Sequencing Panel.
Objectives: The study aims to investigate genetic characterization of molecular targets and clinicopathological features with gastrointestinal stromal tumors based on targeted next-generation sequencing. Materials and Methods: We selected 106 patients with GISTs from Sir Run Run Shaw Hospital between July 2019 and March 2021. FFPE samples and paired blood samples were obtained from these patients who underwent excision of the tumor. A customized targeted-NGS panel of nine GIST-associated genes was designed to detect variants in the coding regions and the splicing sites of these genes. Results: In total, 106 patients with a GIST were included in the study which presented with various molecular driver alterations in this study. KIT mutations occurred most often in GISTs (94/106, 95.92%), followed by point mutations in PDGFRA. KIT or PDGFRA mutations were detected to be mutually exclusive in the GIST. A total of eight patients with wide-type KIT/PDGFRA were characterized as WT-GISTs, according to clinical diagnosis which included six quadruple-WT GISTs, 1 BRAF-mutant, and 1 NF1-mutant GIST. In KIT exon 11, the most common mutation type was the codon Mutation (in-frame deletion or indels), whereas the missense mutation was the dominant type in KIT exon 13 and KIT exon 17. All variations in KIT exon 11 observed in this study were concentrated at a certain position of codon 550 to codon 576. Mutation in KIT exon 9 was mostly located at codon 502-503. Two germline pathogenic mutations were detected: NF1-R681* and KRAS-T58I. NF1-L591P was a germline mutation to be identified for the first time and is not recorded in the database. The frequency of driving mutations differed between the primary anatomical site in the GIST (p = 0.0206). KIT exon 11 mutants had a lower proliferation index of Ki67 (68.66%,≤5%), while 50.00% of KIT exon 9 mutants had the Ki67 status greater than 10%. Conclusion: The occurrence and development of a GIST is driven by different molecular variations. Resistance to TKIs arises mainly with resistance mutations in KIT or PDGFRA when they are the primary drivers. Targeted NGS can simultaneously and efficiently detect nine GIST-related gene mutations and provide reference for clinicians' individualized diagnosis and treatment. Our results have important implications for clinical management.
Qian H
,Yan N
,Hu X
,Jiang J
,Cao Z
,Shen D
... -
《Frontiers in Genetics》
Gastrointestinal stromal tumors - Summary of mutational status of the primary/secondary KIT/PDGFRA mutations, BRAF mutations and SDH defects.
The most important findings revealing pathogenesis, molecular characteristics, genotyping and targeted therapy of gastrointestinal stromal tumors (GISTs) are activated oncogenic mutations in KIT and PDGFRA genes. Imatinib mesylate (IM), which inhibits both KIT and PDGFRA receptors, significantly improved treatment of advanced (metastatic, recurrent, and/or inoperable) GISTs. However, in a significant number of patients the treatment fails due to the primary or secondary resistance to targeted therapy. Most common cause of secondary resistance is a presence of secondary mutations. Approximately 15% of adult patients with GISTs are negative for mutations in KIT or PDGFRA genes. These so-called wild-type GISTs appear to be characterized by other oncogenetic drivers, including mutations in BRAF, RAS, NF1 genes, and subunits of succinate dehydrogenase (SDH) complex. In the present study we investigated 261 tumour specimens from 239 patients with GIST. Primary mutations were detected in 82 % tumor specimens. 66 of them were in KIT, and 16 % in PDGFRA genes. Remaining 18 % were KIT/PDGFRA wild-type. Secondary KIT mutations were detected in 10 from 133 (7 %) patients treated with IM. We examined secondary KIT mutations in exons 13 and 17 and secondary PDGFRA mutation in exon 18 in sixteen progressive tumors and/or metastasis (from overall 22 samples). We identified BRAF V600E point mutation in 4 % of KIT/PDGFRA wild-type GIST patients. Moreover, we analysed SDH complex mutations in 4 younger patients (15, 33, 37, and 45 years old) from 44 patients without KIT, PDGFRA, and BRAF mutations. Two patients (a 37-year old man, and a 33-year old woman) had defects of the SDH complex. Our findings of mutational status of the primary and secondary KIT/PDGFRA mutations in patients with GIST confirm mechanisms of primary and secondary resistance, and also intralesional and interlesional heterogeneity of secondary mutations within and between progressive lesions. Moreover, detection of V600E BRAF mutation and defects of SDH complex in KIT/PDGFRA wild-type GISTs confirm their activation and allow for a selection of targeted therapy.
Kalfusova A
,Linke Z
,Kalinova M
,Krskova L
,Hilska I
,Szabova J
,Vicha A
,Kodet R
... -
《-》