The Impact of Point-of-Care Ultrasound-Guided Resuscitation on Clinical Outcomes in Patients With Shock: A Systematic Review and Meta-Analysis.
作者:
Basmaji J , Arntfield R , Desai K , Lau VI , Lewis K , Rochwerg B , Fiorini K , Honarmand K , Slessarev M , Leligdowicz A , Park B , Prager R , Wong MYS , Jones PM , Ball IM , Orozco N , Meade M , Thabane L , Guyatt G
展开
摘要:
收起
展开
DOI:
10.1097/CCM.0000000000006399
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
-
Basmaji J ,Arntfield R ,Desai K ,Lau VI ,Lewis K ,Rochwerg B ,Fiorini K ,Honarmand K ,Slessarev M ,Leligdowicz A ,Park B ,Prager R ,Wong MYS ,Jones PM ,Ball IM ,Orozco N ,Meade M ,Thabane L ,Guyatt G ... - 《-》
被引量: - 发表:1970年 -
Treatment for women with postpartum iron deficiency anaemia.
Postpartum iron deficiency anaemia is caused by antenatal iron deficiency or excessive blood loss at delivery and might affect up to 50% of labouring women in low- and middle-income countries. Effective and safe treatment during early motherhood is important for maternal well-being and newborn care. Treatment options include oral iron supplementation, intravenous iron, erythropoietin, and red blood cell transfusion. To assess the benefits and harms of the available treatment modalities for women with postpartum iron deficiency anaemia. These include intravenous iron, oral iron supplementation, red blood cell transfusion, and erythropoietin. A Cochrane Information Specialist searched for all published, unpublished, and ongoing trials, without language or publication status restrictions. We searched databases including CENTRAL, MEDLINE, Embase, CINAHL, LILACS, WHO ICTRP, and ClinicalTrials.gov, together with reference checking, citation searching, and contact with study authors to identify eligible studies. We applied date limits to retrieve new records since the last search on 9 April 2015 until 11 April 2024. We included published, unpublished, and ongoing randomised controlled trials (RCTs) that compared treatments for postpartum iron deficiency anaemia with placebo, no treatment, or alternative treatments. Cluster-randomised trials were eligible for inclusion. We included RCTs regardless of blinding. Participants were women with postpartum haemoglobin ≤ 12 g/dL, treated within six weeks after childbirth. We excluded non-randomised, quasi-randomised, and cross-over trials. The critical outcomes of this review were maternal mortality and fatigue. The important outcomes included persistent anaemia symptoms, persistent postpartum anaemia, psychological well-being, infections, compliance with treatment, breastfeeding, length of hospital stay, serious adverse events, anaphylaxis or evidence of hypersensitivity, flushing/Fishbane reaction, injection discomfort/reaction, constipation, gastrointestinal pain, number of red blood cell transfusions, and haemoglobin levels. We assessed risk of bias in the included studies using the Cochrane RoB 1 tool. Two review authors independently performed study screening, risk of bias assessment, and data extraction. We contacted trial authors for supplementary data when necessary. We screened all trials for trustworthiness and scientific integrity using the Cochrane Trustworthiness Screening Tool. We conducted meta-analyses using a fixed-effect model whenever feasible to synthesise outcomes. In cases where data were not suitable for meta-analysis, we provided a narrative summary of important findings. We evaluated the overall certainty of the evidence using GRADE. We included 33 RCTs with a total of 4558 postpartum women. Most trials were at high risk of bias for several risk of bias domains. Most of the evidence was of low or very low certainty. Imprecision due to few events and risk of bias due to lack of blinding were the most important factors. Intravenous iron versus oral iron supplementation The evidence is very uncertain about the effect of intravenous iron on mortality (risk ratio (RR) 2.95, 95% confidence interval (CI) 0.12 to 71.96; P = 0.51; I² = not applicable; 3 RCTs; 1 event; 572 women; very low-certainty evidence). One woman died of cardiomyopathy, and another developed arrhythmia, both in the groups treated with intravenous iron. Intravenous iron probably results in a slight reduction in fatigue within 8 to 28 days (standardised mean difference -0.25, 95% CI -0.42 to -0.07; P = 0.006; I² = 47%; 2 RCTs; 515 women; moderate-certainty evidence). Breastfeeding was not reported. Oral iron probably increases the risk of constipation compared to intravenous iron (RR 0.12, 95% CI 0.06 to 0.21; P < 0.001; I² = 0%; 10 RCTs; 1798 women; moderate-certainty evidence). The evidence is very uncertain about the effect of intravenous iron on anaphylaxis or hypersensitivity (RR 2.77, 95% CI 0.31 to 24.86; P = 0.36; I² = 0%; 12 RCTs; 2195 women; very low-certainty evidence). Three women treated with intravenous iron experienced anaphylaxis or hypersensitivity. The trials that reported on haemoglobin at 8 to 28 days were too heterogeneous to pool. However, 5 of 6 RCTs favoured intravenous iron, with mean changes in haemoglobin ranging from 0.73 to 2.10 g/dL (low-certainty evidence). Red blood cell transfusion versus intravenous iron No women died in the only trial that reported on mortality (1 RCT; 7 women; very low-certainty evidence). The evidence is very uncertain about the effect of red blood cell transfusion on fatigue at 8 to 28 days (mean difference (MD) 1.20, 95% CI -2.41 to 4.81; P = 0.51; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence) and breastfeeding more than six weeks postpartum (RR 0.43, 95% CI 0.12 to 1.57; P = 0.20; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence). Constipation and anaphylaxis were not reported. Red blood cell transfusion may result in little to no difference in haemoglobin within 8 to 28 days (MD -1.00, 95% CI -2.02 to 0.02; P = 0.05; I² = not applicable; 1 RCT; 12 women; low-certainty evidence). Intravenous iron and oral iron supplementation versus oral iron supplementation Mortality and breastfeeding were not reported. One trial reported a greater improvement in fatigue in the intravenous and oral iron group, but the effect size could not be calculated (1 RCT; 128 women; very low-certainty evidence). Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone (RR 0.21, 95% CI 0.07 to 0.69; P = 0.01; I² = not applicable; 1 RCT; 128 women; low-certainty evidence). There were no anaphylaxis or hypersensitivity events in the trials (2 RCTs; 168 women; very low-certainty evidence). Intravenous iron and oral iron may result in little to no difference in haemoglobin (g/dL) at 8 to 28 days (MD 0.00, 95% CI -0.48 to 0.48; P = 1.00; I² = not applicable; 1 RCT; 60 women; low-certainty evidence). Red blood cell transfusion versus no transfusion Mortality, fatigue at day 8 to 28, constipation, anaphylaxis, and haemoglobin were not reported. Red blood cell transfusion may result in little to no difference in breastfeeding more than six weeks postpartum (RR 0.91, 95% CI 0.78 to 1.07; P = 0.24; I² = not applicable; 1 RCT; 297 women; low-certainty evidence). Oral iron supplementation versus placebo or no treatment Mortality, fatigue, breastfeeding, constipation, anaphylaxis, and haemoglobin were not reported. Two trials reported on gastrointestinal symptoms, but did not report results by study arm. Intravenous iron probably reduces fatigue slightly in the early postpartum weeks (8 to 28 days) compared to oral iron tablets, but probably results in little to no difference after four weeks. It is very uncertain if intravenous iron has an effect on mortality and anaphylaxis/hypersensitivity. Breastfeeding was not reported. Intravenous iron may increase haemoglobin slightly more than iron tablets, but the data were too heterogeneous to pool. However, changes in haemoglobin levels are a surrogate outcome, and treatment decisions should preferentially be based on patient-relevant outcomes. Iron tablets probably result in a large increase in constipation compared to intravenous iron. The effect of red blood cell transfusion compared to intravenous iron on mortality, fatigue, and breastfeeding is very uncertain. No studies reported on constipation or anaphylaxis/hypersensitivity. Red blood cell transfusion may result in little to no difference in haemoglobin at 8 to 28 days. The effect of intravenous iron and oral iron supplementation on mortality, fatigue, breastfeeding, and anaphylaxis/hypersensitivity is very uncertain or unreported. Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone, and in little to no difference in haemoglobin. The effect of red blood cell transfusion compared to non-transfusion on mortality, fatigue, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. Red blood cell transfusion may result in little to no difference in breastfeeding. The effect of oral iron supplementation on mortality, fatigue, breastfeeding, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. This Cochrane review had no dedicated funding. Protocol and previous versions are available: Protocol (2013) [DOI: 10.1002/14651858.CD010861] Original review (2004) [DOI: 10.1002/14651858.CD004222.pub2] Review update (2015) [DOI: 10.1002/14651858.CD010861.pub2].
Jensen MCH ,Holm C ,Jørgensen KJ ,Schroll JB ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Interventions to prevent surgical site infection in adults undergoing cardiac surgery.
Surgical site infection (SSI) is a common type of hospital-acquired infection and affects up to a third of patients following surgical procedures. It is associated with significant mortality and morbidity. In the United Kingdom alone, it is estimated to add another £30 million to the cost of adult cardiac surgery. Although generic guidance for SSI prevention exists, this is not specific to adult cardiac surgery. Furthermore, many of the risk factors for SSI are prevalent within the cardiac surgery population. Despite this, there is currently no standard of care for SSI prevention in adults undergoing cardiac surgery throughout the preoperative, intraoperative and postoperative periods of care, with variations in practice existing throughout from risk stratification, decontamination strategies and surveillance. Primary objective: to assess the clinical effectiveness of pre-, intra-, and postoperative interventions in the prevention of cardiac SSI. (i) to evaluate the effects of SSI prevention interventions on morbidity, mortality, and resource use; (ii) to evaluate the effects of SSI prevention care bundles on morbidity, mortality, and resource use. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE (Ovid, from inception) and Embase (Ovid, from inception) on 31 May 2021. gov and the WHO International Clinical Trials Registry Platform (ICTRP) were also searched for ongoing or unpublished trials on 21 May 2021. No language restrictions were imposed. We included RCTs evaluating interventions to reduce SSI in adults (≥ 18 years of age) who have undergone any cardiac surgery. We followed the methods as per our published Cochrane protocol. Our primary outcome was surgical site infection. Our secondary outcomes were all-cause mortality, reoperation for SSI, hospital length of stay, hospital readmissions for SSI, healthcare costs and cost-effectiveness, quality of life (QoL), and adverse effects. We used the GRADE approach to assess the certainty of evidence. A total of 118 studies involving 51,854 participants were included. Twenty-two interventions to reduce SSI in adults undergoing cardiac surgery were identified. The risk of bias was judged to be high in the majority of studies. There was heterogeneity in the study populations and interventions; consequently, meta-analysis was not appropriate for many of the comparisons and these are presented as narrative summaries. We focused our reporting of findings on four comparisons deemed to be of great clinical relevance by all review authors. Decolonisation versus no decolonisation Pooled data from three studies (n = 1564) using preoperative topical oral/nasal decontamination in all patients demonstrated an uncertain direction of treatment effect in relation to total SSI (RR 0.98, 95% CI 0.70 to 1.36; I2 = 0%; very low-certainty evidence). A single study reported that decolonisation likely results in little to no difference in superficial SSI (RR 1.35, 95% CI 0.84 to 2.15; moderate-certainty evidence) and a reduction in deep SSI (RR 0.36, 95% CI 0.17 to 0.77; high-certainty evidence). The evidence on all-cause mortality from three studies (n = 1564) is very uncertain (RR 0.66, 95% CI 0.24 to 1.84; I2 = 49%; very low-certainty evidence). A single study (n = 954) demonstrated that decolonisation may result in little to no difference in hospital readmission for SSI (RR 0.80, 95% CI 0.44 to 1.45; low-certainty evidence). A single study (n = 954) reported one case of temporary discolouration of teeth in the decolonisation arm (low-certainty-evidence. Reoperation for SSI was not reported. Tight glucose control versus standard glucose control Pooled data from seven studies (n = 880) showed that tight glucose control may reduce total SSI, but the evidence is very uncertain (RR 0.41, 95% CI 0.19 to 0.85; I2 = 29%; numbers need to treat to benefit (NNTB) = 13; very-low certainty evidence). Pooled data from seven studies (n = 3334) showed tight glucose control may reduce all-cause mortality, but the evidence is very uncertain (RR 0.61, 95% CI 0.41 to 0.91; I2 = 0%; very low-certainty evidence). Based on four studies (n = 2793), there may be little to no difference in episodes of hypoglycaemia between tight control vs. standard control, but the evidence is very uncertain (RR 2.12, 95% CI 0.51 to 8.76; I2 = 72%; very low-certainty evidence). No studies reported superficial/deep SSI, reoperation for SSI, or hospital readmission for SSI. Negative pressure wound therapy (NPWT) versus standard dressings NPWT was assessed in two studies (n = 144) and it may reduce total SSI, but the evidence is very uncertain (RR 0.17, 95% CI 0.03 to 0.97; I2 = 0%; NNTB = 10; very low-certainty evidence). A single study (n = 80) reported reoperation for SSI. The relative effect could not be estimated. The certainty of evidence was judged to be very low. No studies reported superficial/deep SSI, all-cause mortality, hospital readmission for SSI, or adverse effects. Topical antimicrobials versus no topical antimicrobials Five studies (n = 5382) evaluated topical gentamicin sponge, which may reduce total SSI (RR 0.62, 95% CI 0.46 to 0.84; I2 = 48%; NNTB = 32), superficial SSI (RR 0.60, 95% CI 0.37 to 0.98; I2 = 69%), and deep SSI (RR 0.67, 95% CI 0.47 to 0.96; I2 = 5%; low-certainty evidence. Four studies (n = 4662) demonstrated that topical gentamicin sponge may result in little to no difference in all-cause mortality, but the evidence is very uncertain (RR 0.96, 95% CI 0.65 to 1.42; I2 = 0%; very low-certainty evidence). Reoperation for SSI, hospital readmission for SSI, and adverse effects were not reported in any included studies. This review provides the broadest and most recent review of the current evidence base for interventions to reduce SSI in adults undergoing cardiac surgery. Twenty-one interventions were identified across the perioperative period. Evidence is of low to very low certainty primarily due to significant heterogeneity in how interventions were implemented and the definitions of SSI used. Knowledge gaps have been identified across a number of practices that should represent key areas for future research. Efforts to standardise SSI outcome reporting are warranted.
Cardiothoracic Interdisciplinary Research Network ,Rogers LJ ,Vaja R ,Bleetman D ,Ali JM ,Rochon M ,Sanders J ,Tanner J ,Lamagni TL ,Talukder S ,Quijano-Campos JC ,Lai F ,Loubani M ,Murphy GJ ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Intravenous iron is increasingly used to treat iron-deficient anaemia (IDA) in pregnancy. A previous network meta-analysis suggested that intravenous irons have a greater effect on haematological parameters than oral irons; however, the impact on serious pregnancy complications such as postpartum haemorrhage (PPH) or the need for blood transfusion was unclear. Since then, several new randomised controlled trials (RCTs) have been conducted. To evaluate the effect and safety of intravenous versus oral iron preparations for treating IDA in pregnancy. We searched CENTRAL, MEDLINE, Embase, and two trial registries (ClinicalTrials.gov and the WHO ICTRP) for eligible studies. The latest search was performed on 19 March 2024. We included RCTs in pregnant women with confirmed IDA (haemoglobin (Hb) level < 11 g/dL as per World Health Organization (WHO) criteria) comparing intravenous (iron sucrose, ferric carboxymaltose, ferric derisomaltose, ferumoxytol) and oral (ferrous sulfate, ferrous fumarate, ferrous gluconate) iron preparations. Our outcomes were antenatal and postnatal Hb levels, antenatal and postnatal anaemia status, PPH, blood transfusion, maternal satisfaction, maternal well-being, breastfeeding, maternal mortality, maternal morbidity, and adverse events (AEs). We used the Cochrane RoB 1 tool to assess risk of bias in the included RCTs. We followed standard Cochrane methods. Two review authors independently assessed studies for eligibility and scientific rigour, evaluated the risk of bias of included studies, and extracted data. Where appropriate, we pooled data using a fixed-effect model in the first instance. We reported dichotomous data as risk ratios (RRs) with 95% confidence intervals (CIs) and continuous data as mean differences (MDs) with 95% CIs. We assessed the certainty of the evidence using the GRADE approach. We included 13 RCTs (3939 participants) mainly conducted in India and Africa (8/13). Gestational age at baseline ranged from 13 to 37 weeks, and Hb levels ranged from 5.0 to just below 11.0 g/dL. The most frequently compared preparations were intravenous iron sucrose versus oral ferrous sulfate (5/13). Most RCTs were at low risk of bias, and the certainty of evidence ranged from moderate to very low, mainly due to concerns over attrition bias, imprecision, and inconsistency. Antenatal outcomes Compared with oral iron, intravenous iron likely slightly increases Hb level three to six weeks after treatment start (MD 0.49, 95% CI 0.28 to 0.69; 11 RCTs; 2935 participants; moderate-certainty evidence) and likely reduces anaemia status three to six weeks after treatment start (RR 0.81, 95% CI 0.77 to 0.86; 5 RCTs; 2189 participants; moderate-certainty evidence). Compared with oral iron, intravenous iron likely slightly increases Hb level around birth (MD 0.55, 95% CI 0.33 to 0.77; 6 RCTs; 1574 participants; moderate-certainty evidence) and likely reduces anaemia status around birth (RR 0.85, 95% CI 0.77 to 0.93; 4 RCTs; 1240 participants; moderate-certainty evidence). Postpartum outcomes Compared with oral iron, intravenous iron may slightly increase Hb level postpartum (MD 0.54, 95% CI 0.41 to 0.68; 3 RCTs; 1950 participants; low-certainty evidence). It may also reduce anaemia status (RR 0.66, 95% CI 0.59 to 0.73; 3 RCTs; 1950 participants; low-certainty evidence) and severe anaemia postpartum (RR 0.16, 95% CI 0.03 to 0.84; 2 RCTs; 1581 participants; very low-certainty evidence), although the evidence for the latter outcome is very uncertain. Compared with oral iron, intravenous iron may result in little to no difference in PPH (RR 1.44, 95% CI 0.50 to 4.20; 3 RCTs; 2251 participants; low-certainty evidence) and likely results in little to no difference in the need for blood transfusion (RR 0.97, 95% CI 0.58 to 1.60; 6 RCTs; 2592 participants; moderate-certainty evidence) or rates of breastfeeding (RR 1.04, 95% CI 0.97 to 1.12; 1 RCT; 404 participants; moderate-certainty evidence). No trials reported on maternal satisfaction or maternal well-being. Adverse outcomes Compared with oral iron, intravenous iron may have little to no effect on maternal mortality, but the evidence is very uncertain (RR 0.91, 95% CI 0.13 to 6.39; 4 RCTs; 2152 participants; very low-certainty evidence). Compared with oral iron, intravenous iron likely does not increase maternal morbidity: severe infections (RR 1.01, 95% CI 0.47 to 2.18; 1 RCT; 1881 participants; moderate-certainty evidence) and prolonged hospital stay (RR 0.86, 95% CI 0.62 to 1.21; 1 RCT; 1764 participants; moderate-certainty evidence) and may not increase admissions to the intensive care unit (ICU) (RR 1.99, 95% CI 0.18 to 21.87; 2 RCTs; 2069 participants; low-certainty evidence). Compared with oral iron, intravenous iron likely does not increase AEs (RR 1.05, 95% CI 0.82 to 1.35; 1 RCT; 349 participants; moderate-certainty evidence) and may not increase serious AEs (RR 1.25, 95% CI 0.61 to 2.59; 1 RCT; 1934 participants; low-certainty evidence). However, individual AEs were inconsistently reported across trials. Intravenous iron likely slightly increases Hb levels and likely reduces anaemia in pregnancy compared to oral iron. Hb levels postpartum may be slightly increased with intravenous iron, but the effect on postpartum severe anaemia status is very uncertain. Intravenous iron may result in little to no difference in PPH, and blood transfusion rates are likely unaffected by route of administration. Synthesis of adverse outcomes proved challenging due to their rarity and suboptimal reporting. The effects of intravenous iron on maternal mortality and admissions to the ICU are very uncertain, and there is likely little to no difference between groups in severe infections and prolonged hospital stay. Intravenous iron likely does not increase AEs and may not increase serious AEs; however, the 95% CIs in both cases include potential harm. Furthermore, this finding should be treated cautiously due to the varied adverse event profiles of both types of iron preparations. Data from the ongoing multicentre trials may address some of the identified evidence gaps. However, there is a clear need to strengthen the co-ordination of research efforts around clinically important time points of outcome measure, homogeneity of their definition, and safety reporting. This Cochrane Review was partially funded by the WHO and was supported by the UK Medical Research Council funding. Registration (2024): PROSPERO, CRD42024523791 via www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024523791.
Nicholson L ,Axon E ,Daru J ,Rogozińska E ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Postpartum haemorrhage (PPH) is responsible for around 27% of global maternal deaths. Perineal tears are common in vaginal births and a significant contributor to excessive blood loss. A diversity of perineal techniques are utilised to prevent perineal trauma and reduce the incidence of PPH; however, they lack evidence-based comparisons to understand their effects. To assess the effect of perineal techniques during the second stage of labour on the incidence of and morbidity associated with perineal trauma to prevent postpartum complications. We searched four databases and two trial registers up to 16 April 2024. We checked references, searched citations and contacted study authors to identify additional studies. We included randomised controlled trials (RCTs) of women in the second stage of labour who intended to give birth vaginally, comparing any perineal techniques with control or another perineal technique. We excluded studies that performed perineal techniques outside the second stage of labour. Our critical outcomes were second-, third- and fourth-degree tears measured immediately after birth, and PPH ≥ 500 mL measured within 24 hours after birth. We used the Cochrane risk of bias 2 tool to assess bias in the included RCTs. We synthesised results for each outcome within each comparison using meta-analysis where possible. Where this was not possible due to the nature of the data, we synthesised results narratively. We used GRADE to assess the certainty of evidence for each outcome. We included a total of 17 studies with 13,695 participants. Hands off (or poised) versus hands on Hands off (poised) may result in little to no difference in second-degree tears (risk ratio (RR) 0.73, 95% confidence interval (CI) 0.32 to 1.64; 2 studies; low-certainty evidence) and third- or fourth-degree tears when data are combined (RR 1.27, 95% CI 0.81 to 1.99; 2 studies; low-certainty evidence). The evidence is very uncertain about the effect of hands off (poised) on third-degree tears and fourth-degree tears when reported separately (RR 0.50, 95% CI 0.05 to 5.27; 1 study; very low-certainty evidence and RR 3.00, 95% CI 0.13 to 71.22; 1 study; very low-certainty evidence). Hands off (poised) may result in little to no difference in PPH ≥ 500 mL (RR 1.16, 95% CI 0.92 to 1.47; 1 study; low-certainty evidence). Hands off (poised) probably results in little to no difference in breastfeeding two days after birth (RR 1.02, 95% CI 0.99 to 1.06; 1 study; moderate-certainty evidence) and perineal pain (RR 0.98, 95% CI 0.94 to 1.01; 1 study; moderate-certainty evidence). Vocalisation versus control Vocalisation may result in a reduction in second-degree tears (RR 0.56, 95% CI 0.23 to 1.38; 1 study; low-certainty evidence) and third-degree tears (RR 0.13, 95% CI 0.01 to 2.32; 1 study; low-certainty evidence), but the CIs are wide and include the possibility of no effect. No events were reported for fourth-degree tears (low-certainty evidence). Vocalisation may increase maternal satisfaction (RR 1.19, 95% CI 0.93 to 1.51; 1 study; low-certainty evidence). The evidence is very uncertain about the effect of vocalisation on perineal pain (RR 1.44, 95% CI 0.81 to 2.58; 1 study; very low-certainty evidence). Warm compress on the perineum versus control (hands off or no warm compress) Warm compress on the perineum may result in little to no difference in second-degree tears (RR 0.94, 95% CI 0.72 to 1.21; 2 studies; low-certainty evidence), but likely results in a reduction in third- or fourth-degree tears (RR 0.46, 95% CI 0.27 to 0.79; 3 studies; moderate-certainty evidence). Evidence from two smaller studies is very uncertain about the effect of warm compress on the perineum on third-degree tears (RR 0.51, 95% CI 0.04 to 7.05; 2 studies; very low-certainty evidence) or fourth-degree tears (RR 0.11, 95% CI 0.01 to 2.06; 2 studies; very low-certainty evidence) when reported separately. Warm compress likely results in a large reduction in perineal pain (mean difference (MD) -0.81, 95% CI -1.18 to -0.44; 1 study; moderate-certainty evidence). The evidence is very uncertain about the effect of warm compress on the perineum on maternal satisfaction and PPH ≥ 500 mL. Massage of the perineum versus control (hands off or no usual care) Massage of the perineum may have little to no effect on second-degree tears (RR 1.04, 95% CI 0.89 to 1.21; 4 studies; low-certainty evidence). The evidence is very uncertain about the effect of massage of the perineum on third-degree tears (RR 0.57, 95% CI 0.16 to 2.02; 4 studies; very low-certainty evidence). Massage of the perineum may reduce fourth-degree tears but the CIs are wide and include the possibility of no effect (RR 0.26, 95% CI 0.04 to 1.61; 4 studies; low-certainty evidence). The evidence suggests that massage likely results in little to no difference in perineal pain (RR 0.97, 95% CI 0.90, 1.05; 1 study; moderate-certainty evidence). One study reported 10 participants with postpartum haemorrhage across three interventions (warm compress, massage, control). Combined warm compress and massage of the perineum versus control Combined warm compress and massage of the perineum likely results in a reduction in second-degree tears when compared to a control (RR 0.63, 95% CI 0.46 to 0.86; 1 study; moderate-certainty evidence), but the evidence is very uncertain about the effect on third-degree tears (RR 2.92, 95% CI 0.12 to 70.72; 1 study; very low-certainty evidence). The intervention may result in a reduction in PPH ≥ 500 mL but the CIs are wide and include the possibility of no effect (RR 0.43, 95% CI 0.14 to 1.35; 1 study; low-certainty evidence). Combined warm compress and massage likely results in an increase in maternal satisfaction (MD 0.4, 95% CI -0.01 to 0.81; 1 study; moderate-certainty evidence). Combined warm compress and massage of the perineum versus massage alone Combined warm compress and massage of the perineum may result in little to no difference in second-degree tears (RR 0.95, 95% CI 0.86 to 1.06; 1 study; low-certainty evidence) when compared to massage alone, but the evidence is very uncertain about the effect on third- or fourth-degree tears (RR 0.98, 95% CI 0.06 to 15.49; 1 study; very low-certainty evidence). It may also result in little to no difference in PPH ≥ 500 mL (RR 1.10, 95% CI 0.59 to 2.07; 1 study; low-certainty evidence). The evidence suggests that combined warm compress and massage may result in little to no difference in maternal satisfaction (1 study; low-certainty evidence). Other perineal techniques We also assessed evidence on the following comparisons, but since they are used less frequently in global clinical practice to optimise birth outcomes, we have not presented the results summary here: Ritgen's manoeuvre versus standard care; primary delivery of posterior versus anterior shoulder; massage with enriched oil on the perineum versus massage with liquid wax; petroleum jelly on the perineum versus control; and perineal protection device versus control. Overall, the evidence for the effectiveness of perineal techniques to reduce perineal trauma and postpartum haemorrhage is very uncertain. Very few studies reported rates of postpartum haemorrhage, adverse events, women's or health workers' experience or other important outcomes that allow us to understand the effectiveness and acceptability of perineal techniques to reduce perineal trauma. Prior to any further large trials, research is needed to clarify the types of interventions, including a clear description of the process of development and involvement of relevant stakeholders. There is a need to clarify how the intervention is proposed to achieve its effects. Trials would benefit from process evaluation alongside, to explore context, mechanisms and effects. This Cochrane review was funded (in part) by WHO (APW 2024/1475460). TF, VL and the CIDG editorial base are funded by UK aid from the UK government for the benefit of low- and middle-income countries (project number 300342-104). The views expressed do not necessarily reflect the UK government's official policies. Registration and protocol: PROSPERO, CRD42024537252. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024537252.
Dwan K ,Fox T ,Lutje V ,Lavender T ,Mills TA ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年
加载更多
加载更多
加载更多