Prevalence of SARS-CoV-2 in Children Identified by Preprocedural Testing at 5 US Children's Hospital Systems.
作者:
Wang-Erickson AF , Zhang X , Dauer K , Zerr DM , Adler A , Englund JA , Lee B , Schuster JE , Selvarangan R , Rohlfs C , Staat MA , Sahni LC , Boom JA , Balasubramani GK , Williams JV , Michaels MG
展开
摘要:
收起
展开
DOI:
10.1097/INF.0000000000004547
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
-
Wang-Erickson AF ,Zhang X ,Dauer K ,Zerr DM ,Adler A ,Englund JA ,Lee B ,Schuster JE ,Selvarangan R ,Rohlfs C ,Staat MA ,Sahni LC ,Boom JA ,Balasubramani GK ,Williams JV ,Michaels MG ... - 《-》
被引量: - 发表:1970年 -
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Sample collection is a key driver of accuracy in the diagnosis of SARS-CoV-2 infection. Viral load may vary at different anatomical sampling sites and accuracy may be compromised by difficulties obtaining specimens and the expertise of the person taking the sample. It is important to optimise sampling accuracy within cost, safety and accessibility constraints. To compare the sensitivity of different sampling collection sites and methods for the detection of current SARS-CoV-2 infection with any molecular or antigen-based test. Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 22 February 2022. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. We included studies of symptomatic or asymptomatic people with suspected SARS-CoV-2 infection undergoing testing. We included studies of any design that compared results from different sample types (anatomical location, operator, collection device) collected from the same participant within a 24-hour period. Within a sample pair, we defined a reference sample and an index sample collected from the same participant within the same clinical encounter (within 24 hours). Where the sample comparison was different anatomical sites, the reference standard was defined as a nasopharyngeal or combined naso/oropharyngeal sample collected into the same sample container and the index sample as the alternative anatomical site. Where the sample comparison was concerned with differences in the sample collection method from the same site, we defined the reference sample as that closest to standard practice for that sample type. Where the sample pair comparison was concerned with differences in personnel collecting the sample, the more skilled or experienced operator was considered the reference sample. Two review authors independently assessed the risk of bias and applicability concerns using the QUADAS-2 and QUADAS-C checklists, tailored to this review. We present estimates of the difference in the sensitivity (reference sample (%) minus index sample sensitivity (%)) in a pair and as an average across studies for each index sampling method using forest plots and tables. We examined heterogeneity between studies according to population (age, symptom status) and index sample (time post-symptom onset, operator expertise, use of transport medium) characteristics. This review includes 106 studies reporting 154 evaluations and 60,523 sample pair comparisons, of which 11,045 had SARS-CoV-2 infection. Ninety evaluations were of saliva samples, 37 nasal, seven oropharyngeal, six gargle, six oral and four combined nasal/oropharyngeal samples. Four evaluations were of the effect of operator expertise on the accuracy of three different sample types. The majority of included evaluations (146) used molecular tests, of which 140 used RT-PCR (reverse transcription polymerase chain reaction). Eight evaluations were of nasal samples used with Ag-RDTs (rapid antigen tests). The majority of studies were conducted in Europe (35/106, 33%) or the USA (27%) and conducted in dedicated COVID-19 testing clinics or in ambulatory hospital settings (53%). Targeted screening or contact tracing accounted for only 4% of evaluations. Where reported, the majority of evaluations were of adults (91/154, 59%), 28 (18%) were in mixed populations with only seven (4%) in children. The median prevalence of confirmed SARS-CoV-2 was 23% (interquartile (IQR) 13%-40%). Risk of bias and applicability assessment were hampered by poor reporting in 77% and 65% of included studies, respectively. Risk of bias was low across all domains in only 3% of evaluations due to inappropriate inclusion or exclusion criteria, unclear recruitment, lack of blinding, nonrandomised sampling order or differences in testing kit within a sample pair. Sixty-eight percent of evaluation cohorts were judged as being at high or unclear applicability concern either due to inflation of the prevalence of SARS-CoV-2 infection in study populations by selectively including individuals with confirmed PCR-positive samples or because there was insufficient detail to allow replication of sample collection. When used with RT-PCR • There was no evidence of a difference in sensitivity between gargle and nasopharyngeal samples (on average -1 percentage points, 95% CI -5 to +2, based on 6 evaluations, 2138 sample pairs, of which 389 had SARS-CoV-2). • There was no evidence of a difference in sensitivity between saliva collection from the deep throat and nasopharyngeal samples (on average +10 percentage points, 95% CI -1 to +21, based on 2192 sample pairs, of which 730 had SARS-CoV-2). • There was evidence that saliva collection using spitting, drooling or salivating was on average -12 percentage points less sensitive (95% CI -16 to -8, based on 27,253 sample pairs, of which 4636 had SARS-CoV-2) compared to nasopharyngeal samples. We did not find any evidence of a difference in the sensitivity of saliva collected using spitting, drooling or salivating (sensitivity difference: range from -13 percentage points (spit) to -21 percentage points (salivate)). • Nasal samples (anterior and mid-turbinate collection combined) were, on average, 12 percentage points less sensitive compared to nasopharyngeal samples (95% CI -17 to -7), based on 9291 sample pairs, of which 1485 had SARS-CoV-2. We did not find any evidence of a difference in sensitivity between nasal samples collected from the mid-turbinates (3942 sample pairs) or from the anterior nares (8272 sample pairs). • There was evidence that oropharyngeal samples were, on average, 17 percentage points less sensitive than nasopharyngeal samples (95% CI -29 to -5), based on seven evaluations, 2522 sample pairs, of which 511 had SARS-CoV-2. A much smaller volume of evidence was available for combined nasal/oropharyngeal samples and oral samples. Age, symptom status and use of transport media do not appear to affect the sensitivity of saliva samples and nasal samples. When used with Ag-RDTs • There was no evidence of a difference in sensitivity between nasal samples compared to nasopharyngeal samples (sensitivity, on average, 0 percentage points -0.2 to +0.2, based on 3688 sample pairs, of which 535 had SARS-CoV-2). When used with RT-PCR, there is no evidence for a difference in sensitivity of self-collected gargle or deep-throat saliva samples compared to nasopharyngeal samples collected by healthcare workers when used with RT-PCR. Use of these alternative, self-collected sample types has the potential to reduce cost and discomfort and improve the safety of sampling by reducing risk of transmission from aerosol spread which occurs as a result of coughing and gagging during the nasopharyngeal or oropharyngeal sample collection procedure. This may, in turn, improve access to and uptake of testing. Other types of saliva, nasal, oral and oropharyngeal samples are, on average, less sensitive compared to healthcare worker-collected nasopharyngeal samples, and it is unlikely that sensitivities of this magnitude would be acceptable for confirmation of SARS-CoV-2 infection with RT-PCR. When used with Ag-RDTs, there is no evidence of a difference in sensitivity between nasal samples and healthcare worker-collected nasopharyngeal samples for detecting SARS-CoV-2. The implications of this for self-testing are unclear as evaluations did not report whether nasal samples were self-collected or collected by healthcare workers. Further research is needed in asymptomatic individuals, children and in Ag-RDTs, and to investigate the effect of operator expertise on accuracy. Quality assessment of the evidence base underpinning these conclusions was restricted by poor reporting. There is a need for further high-quality studies, adhering to reporting standards for test accuracy studies.
Davenport C ,Arevalo-Rodriguez I ,Mateos-Haro M ,Berhane S ,Dinnes J ,Spijker R ,Buitrago-Garcia D ,Ciapponi A ,Takwoingi Y ,Deeks JJ ,Emperador D ,Leeflang MMG ,Van den Bruel A ,Cochrane COVID-19 Diagnostic Test Accuracy Group ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Antibody tests for identification of current and past infection with SARS-CoV-2.
The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Fox T ,Geppert J ,Dinnes J ,Scandrett K ,Bigio J ,Sulis G ,Hettiarachchi D ,Mathangasinghe Y ,Weeratunga P ,Wickramasinghe D ,Bergman H ,Buckley BS ,Probyn K ,Sguassero Y ,Davenport C ,Cunningham J ,Dittrich S ,Emperador D ,Hooft L ,Leeflang MM ,McInnes MD ,Spijker R ,Struyf T ,Van den Bruel A ,Verbakel JY ,Takwoingi Y ,Taylor-Phillips S ,Deeks JJ ,Cochrane COVID-19 Diagnostic Test Accuracy Group ... - 《Cochrane Database of Systematic Reviews》
被引量: 48 发表:1970年 -
Chloroquine and hydroxychloroquine have been found to be efficient on SARS-CoV-2, and reported to be efficient in Chinese COV-19 patients. We evaluate the effect of hydroxychloroquine on respiratory viral loads. French Confirmed COVID-19 patients were included in a single arm protocol from early March to March 16th, to receive 600mg of hydroxychloroquine daily and their viral load in nasopharyngeal swabs was tested daily in a hospital setting. Depending on their clinical presentation, azithromycin was added to the treatment. Untreated patients from another center and cases refusing the protocol were included as negative controls. Presence and absence of virus at Day6-post inclusion was considered the end point. Six patients were asymptomatic, 22 had upper respiratory tract infection symptoms and eight had lower respiratory tract infection symptoms. Twenty cases were treated in this study and showed a significant reduction of the viral carriage at D6-post inclusion compared to controls, and much lower average carrying duration than reported in the litterature for untreated patients. Azithromycin added to hydroxychloroquine was significantly more efficient for virus elimination. Despite its small sample size, our survey shows that hydroxychloroquine treatment is significantly associated with viral load reduction/disappearance in COVID-19 patients and its effect is reinforced by azithromycin. This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). Concerns have been raised regarding this article, the substance of which relate to the articles' adherence to Elsevier's publishing ethics policies and the appropriate conduct of research involving human participants, as well as concerns raised by three of the authors themselves regarding the article's methodology and conclusions. Elsevier's Research Integrity and Publishing Ethics Team, in collaboration with the journal's co-owner, the International Society of Antimicrobial Chemotherapy (ISAC), and with guidance from an impartial field expert acting in the role of an independent Publishing Ethics Advisor, Dr. Jim Gray, Consultant Microbiologist at the Birmingham Children's and Women's Hospitals, U.K., conducted an investigation and determined that the below points constituted cause for retraction: • The journal has been unable to confirm whether any of the patients for this study were accrued before ethical approval had been obtained. The ethical approval dates for this article are stated as being 5th and 6th of March 2020 (ANSM and CPP respectively), while the article states that recruitment began in “early March”. The 17th author, Prof. Philippe Brouqui, has confirmed that the start date for patient accrual was 6th March 2020. The journal has not been able to establish whether all patients could have entered into the study in time for the data to have been analysed and included in the manuscript prior to its submission on the 20th March 2020, nor whether all patients were enrolled in the study upon admission as opposed to having been hospitalised for some time before starting the treatment described in the article. Additionally, the journal has not been able to establish whether there was equipoise between the study patients and the control patients. • The journal has not been able to establish whether the subjects in this study should have provided informed consent to receive azithromycin as part of the study. The journal has concluded that that there is reasonable cause to conclude that azithromycin was not considered standard care at the time of the study. The 17th author, Prof. Philippe Brouqui has attested that azithromycin treatment was not, at the time of the study, an experimental treatment but a possible treatment for, or preventative measure against, bacterial superinfections of viral pneumonia as described in section 2.4 of the article, and as such the treatment should be categorised as standard care that would not require informed consent. This does not fully address the journal's concerns around the use of azithromycin in the study. In section 3.1 of the article, it is stated that six patients received azithromycin to prevent (rather than treat) bacterial superinfection. All of these were amongst the patients who also received hydroxychloroquine (HCQ). None of the control patients are reported to have received azithromycin. This would indicate that only patients in the HCQ arm received azithromycin, all of whom were in one center. The recommendations for use of macrolides in France at the time the study was conducted indicate that azithromycin would not have been a logical agent to use as first-line prophylaxis against pneumonia due to the frequency of macrolide resistance amongst bacteria such as pneumococci. These two points suggest that azithromycin would not have been standard practice across southern France at the time the study was conducted and would have required informed consent. • Three of the authors of this article, Dr. Johan Courjon, Prof. Valérie Giordanengo, and Dr. Stéphane Honoré have contacted the journal to assert their opinion that they have concerns regarding the presentation and interpretation of results in this article and have stated they no longer wish to see their names associated with the article. • Author Prof. Valérie Giordanengo informed the journal that while the PCR tests administered in Nice were interpreted according to the recommendations of the national reference center, it is believed that those carried out in Marseille were not conducted using the same technique or not interpreted according to the same recommendations, which in her opinion would have resulted in a bias in the analysis of the data. This raises concerns as to whether the study was partially conducted counter to national guidelines at that time. The 17th author, Prof. Philippe Brouqui has attested that the PCR methodology was explained in reference 17 of the article. However, the article referred to by reference 17 describes several diagnostic approaches that were used (one PCR targeting the envelope protein only; another targeting the spike protein; and three commercially produced systems by QuantiNova, Biofire, and FTD). This reference does not clarify how the results were interpreted. It has also been noted during investigation of these concerns that only 76% (19/25) of patients were viral culture positive, resulting in uncertainty in the interpretation of PCR reports as has been raised by Prof. Giordanengo. As part of the investigation, the corresponding author was contacted and asked to provide an explanation for the above concerns. No response has been received within the deadline provided by the journal. Responses were received by the 3rd and 17th authors, Prof. Philippe Parola and Prof. Philippe Brouqui, respectively, and were reviewed as part of the investigation. These two authors, in addition to 1st author Dr. Philippe Gautret, 13th author Prof. Philippe Colson, and 15th author Prof. Bernard La Scola, disagreed with the retraction and dispute the grounds for it. Having followed due process and concluded the aforementioned investigation and based on the recommendation of Dr. Jim Gray acting in his capacity as independent Publishing Ethics Advisor, the co-owners of the journal (Elsevier and ISAC) have therefore taken the decision to retract the article.
Gautret P ,Lagier JC ,Parola P ,Hoang VT ,Meddeb L ,Mailhe M ,Doudier B ,Courjon J ,Giordanengo V ,Vieira VE ,Tissot Dupont H ,Honoré S ,Colson P ,Chabrière E ,La Scola B ,Rolain JM ,Brouqui P ,Raoult D ... - 《-》
被引量: 2599 发表:1970年 -
SARS-CoV-2 has spread substantially within India over multiple waves of the ongoing COVID-19 pandemic. However, the risk factors and disease burden associated with COVID-19 in India remain poorly understood. We aimed to assess predictors of infection and mortality within an active surveillance study, and to probe the completeness of case and mortality surveillance. In this prospective, active surveillance study, we used data collected under expanded programmatic surveillance testing for SARS-CoV-2 in the district of Madurai, Tamil Nadu, India (population of 3 266 000 individuals). Prospective testing via RT-PCR was done in individuals with fever or acute respiratory symptoms as well as returning travellers, frontline workers, contacts of laboratory-confirmed COVID-19 cases, residents of containment zones, patients undergoing medical procedures, and other risk groups. Standardised data collection on symptoms and chronic comorbid conditions was done as part of routine intake. Additionally, seroprevalence of anti-SARS-CoV-2 immunoglobulin G was assessed via a cross-sectional survey recruiting adults across 38 clusters within Madurai District from Oct 19, 2020, to Nov 5, 2020. We estimated adjusted odds ratios (aORs) for positive RT-PCR results comparing individuals by age, sex, comorbid conditions, and aspects of clinical presentation. We estimated case-fatality ratios (CFRs) over the 30-day period following RT-PCR testing stratified by the same variables, and adjusted hazard ratios (aHRs) for death associated with age, sex, and comorbidity. We estimated infection-fatality ratios (IFRs) on the basis of age-specific seroprevalence. Between May 20, 2020, and Oct 31, 2020, 13·5 diagnostic tests were done per 100 inhabitants within Madurai, as compared to 7·9 tests per 100 inhabitants throughout India. From a total of 440 253 RT-PCR tests, 15 781 (3·6%) SARS-CoV-2 infections were identified, with 8720 (5·4%) of 160 273 being positive among individuals with symptoms, and 7061 (2·5%) of 279 980 being positive among individuals without symptoms, at the time of presentation. Estimated aORs for symptomatic RT-PCR-confirmed infection increased continuously by a factor of 4·3 from ages 0-4 years to 80 years or older. By contrast, risk of asymptomatic RT-PCR-confirmed infection did not differ across ages 0-44 years, and thereafter increased by a factor of 1·6 between ages 45-49 years and 80 years or older. Seroprevalence was 40·1% (95% CI 35·8-44·6) at age 15 years or older by the end of the study period, indicating that RT-PCR clinical testing and surveillance testing identified only 1·4% (1·3-1·6%) of all infections in this age group. Among RT-PCR-confirmed cases, older age, male sex, and history of cancer, diabetes, other endocrine disorders, hypertension, other chronic circulatory disorders, respiratory disorders, and chronic kidney disease were each associated with elevated risk of mortality. The CFR among RT-PCR-confirmed cases was 2·4% (2·2-2·6); after age standardisation. At age 15 years or older, the IFR based on reported deaths was 0·043% (0·039-0·049), with reported deaths being only 11·0% (8·2-14·5) of the expected count. In a large-scale SARS-CoV-2 surveillance programme in Madurai, India, we identified equal risk of asymptomatic infection among children, teenagers, and working-age adults, and increasing risk of infection and death associated with older age and comorbidities. Establishing whether surveillance practices or differences in infection severity account for gaps between observed and expected mortality is of crucial importance to establishing the burden of COVID-19 in India. The Bill & Melinda Gates Foundation, the National Science Foundation, and the National Institute of General Medical Sciences. For the Hindi translation of the abstract see Supplementary Materials section.
Laxminarayan R ,B CM ,G VT ,Arjun Kumar KV ,Wahl B ,Lewnard JA ... - 《-》
被引量: 30 发表:1970年
加载更多
加载更多
加载更多