An endophenotype network strategy uncovers YangXue QingNao Wan suppresses Aβ deposition, improves mitochondrial dysfunction and glucose metabolism.
Alzheimer's disease (AD), an escalating global health issue, lacks effective treatments due to its complex pathogenesis. YangXue QingNao Wan (YXQNW) is a China Food and Drug Administration (CFDA)- approved TCM formula that has been repurposed in clinical Phase II for the treatment of AD. Identifying YXQNW's active ingredients and their mechanisms is crucial for developing effective AD treatments.
This study aims to elucidate the anti-AD effects of YXQNW and to explore its potential therapeutic mechanisms employing an endophenotype network strategy.
Herein we present an endophenotype network strategy that combines active ingredient identification in rat serum, network proximity prediction, metabolomics, and in vivo experimental validation in two animal models. Specially, utilizing UPLC-Q-TOF-MS/MS, active ingredients are identified in YXQNW to build a drug-target network. We applied network proximity to identify potential AD pathological mechanisms of YXQNW via integration of drug-target network, AD endophenotype gene sets, and human protein interactome, and validated related mechanisms in two animal models. In a d-galactose-induced senescent rat model, YXQNW was administered at varying doses for cognitive and neuronal assessments through behavioral tests, Nissl staining, and transmission electron microscopy (TEM). Metabolomic analysis with LC-MS revealed YXQNW's influence on brain metabolites, suggesting therapeutic pathways. Levels of key proteins and biochemicals were measured by WB and ELISA, providing insights into YXQNW's neuroprotective mechanisms. In addition, 5×FAD model mice were used and administered YXQNW by gavage for 14 days at two doses. Amyloid-β levels, transporter expression, and cerebral blood flow have been detected by MRI and biochemical assays.
The network proximity analysis showed that the effect of YXQNW on AD was highly correlated with amyloid β, synaptic function, glucose metabolism and mitochondrial function. The results of metabolomics combined with in vivo experimental validation suggest that YXQNW has the potential to ameliorate glucose transport abnormalities in the brain by upregulating the expression of GLUT1 and GLUT3, while further enhancing glucose metabolism through increased O-GlcNAcylation and mitigating mitochondrial dysfunction via the AMPK/Sirt1 pathway, thereby improving d-galactose-induced cognitive deficits in rats. Additionally, YXQNW treatment significantly decreased Aβ1-42 levels and enhanced cerebral blood flow (CBF) in the hippocampus of 5×FAD mice. while mechanistic findings indicated that YXQNW treatment increased the expression of ABCB1, an Aβ transporter, in 5×FAD model mice to promote the clearance of Aβ from the brain and alleviate AD-like symptoms.
This study reveals that YXQNW may mitigate AD by inhibiting Aβ deposition and ameliorating mitochondrial dysfunction and glucose metabolism, thus offering a promising therapeutic approach for AD.
Wang X
,Yang J
,Zhang X
,Cai J
,Zhang J
,Cai C
,Zhuo Y
,Fang S
,Xu X
,Wang H
,Liu P
,Zhou S
,Wang W
,Hu Y
,Fang J
... -
《-》
Demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy: an international cohort study and individual participant data meta-analysis.
Posterior cortical atrophy is a rare syndrome characterised by early, prominent, and progressive impairment in visuoperceptual and visuospatial processing. The disorder has been associated with underlying neuropathological features of Alzheimer's disease, but large-scale biomarker and neuropathological studies are scarce. We aimed to describe demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy in a large international cohort.
We searched PubMed between database inception and Aug 1, 2021, for all published research studies on posterior cortical atrophy and related terms. We identified research centres from these studies and requested deidentified, individual participant data (published and unpublished) that had been obtained at the first diagnostic visit from the corresponding authors of the studies or heads of the research centres. Inclusion criteria were a clinical diagnosis of posterior cortical atrophy as defined by the local centre and availability of Alzheimer's disease biomarkers (PET or CSF), or a diagnosis made at autopsy. Not all individuals with posterior cortical atrophy fulfilled consensus criteria, being diagnosed using centre-specific procedures or before development of consensus criteria. We obtained demographic, clinical, biofluid, neuroimaging, and neuropathological data. Mean values for continuous variables were combined using the inverse variance meta-analysis method; only research centres with more than one participant for a variable were included. Pooled proportions were calculated for binary variables using a restricted maximum likelihood model. Heterogeneity was quantified using I2.
We identified 55 research centres from 1353 papers, with 29 centres responding to our request. An additional seven centres were recruited by advertising via the Alzheimer's Association. We obtained data for 1092 individuals who were evaluated at 36 research centres in 16 countries, the other sites having not responded to our initial invitation to participate to the study. Mean age at symptom onset was 59·4 years (95% CI 58·9-59·8; I2=77%), 60% (56-64; I2=35%) were women, and 80% (72-89; I2=98%) presented with posterior cortical atrophy pure syndrome. Amyloid β in CSF (536 participants from 28 centres) was positive in 81% (95% CI 75-87; I2=78%), whereas phosphorylated tau in CSF (503 participants from 29 centres) was positive in 65% (56-75; I2=87%). Amyloid-PET (299 participants from 24 centres) was positive in 94% (95% CI 90-97; I2=15%), whereas tau-PET (170 participants from 13 centres) was positive in 97% (93-100; I2=12%). At autopsy (145 participants from 13 centres), the most frequent neuropathological diagnosis was Alzheimer's disease (94%, 95% CI 90-97; I2=0%), with common co-pathologies of cerebral amyloid angiopathy (71%, 54-88; I2=89%), Lewy body disease (44%, 25-62; I2=77%), and cerebrovascular injury (42%, 24-60; I2=88%).
These data indicate that posterior cortical atrophy typically presents as a pure, young-onset dementia syndrome that is highly specific for underlying Alzheimer's disease pathology. Further work is needed to understand what drives cognitive vulnerability and progression rates by investigating the contribution of sex, genetics, premorbid cognitive strengths and weaknesses, and brain network integrity.
None.
Chapleau M
,La Joie R
,Yong K
,Agosta F
,Allen IE
,Apostolova L
,Best J
,Boon BDC
,Crutch S
,Filippi M
,Fumagalli GG
,Galimberti D
,Graff-Radford J
,Grinberg LT
,Irwin DJ
,Josephs KA
,Mendez MF
,Mendez PC
,Migliaccio R
,Miller ZA
,Montembeault M
,Murray ME
,Nemes S
,Pelak V
,Perani D
,Phillips J
,Pijnenburg Y
,Rogalski E
,Schott JM
,Seeley W
,Sullivan AC
,Spina S
,Tanner J
,Walker J
,Whitwell JL
,Wolk DA
,Ossenkoppele R
,Rabinovici GD
,PCA International Work Group
... -
《-》
Antioxidants for female subfertility.
M.G. Showell, R. Mackenzie‐Proctor, V. Jordan, and R.J. Hart, “Antioxidants for Female Subfertility,” Cochrane Database of Systematic Reviews, no. 8 (2020): CD007807, https://doi.org/10.1002/14651858.CD007807.pub4 This Editorial Note is for the above article, published online on August 27, 2020, in Cochrane Library (cochranelibrary.com), and has been issued by the Publisher, John Wiley & Sons Ltd, in agreement with Cochrane. The Editorial note has been agreed due to concerns discovered by the Cochrane managing editor regarding the retraction of six studies in the Review (Badawy et al. 2006, 10.1016/j.fertnstert.2006.02.097; El Refaeey et al. 2014, 10.1016/j.rbmo.2014.03.011; El Sharkwy & Abd El Aziz 2019a, https://doi.org/10.1002/ijgo.12902; Gerli et al. 2007, https://doi.org/10.26355/eurrev_202309_33752, full text: https://europepmc.org/article/MED/18074942; Ismail et al. 2014, http://dx.doi.org/10.1016/j.ejogrb.2014.06.008; Hashemi et al. 2017, https://doi.org/10.1080/14767058.2017.1372413). In addition, expressions of concern have been published for two studies (Jamilian et al. 2018, https://doi.org/10.1007/s12011-017-1236-3; Zadeh Modarres 2018, https://doi.org/10.1007/s12011-017-1148-2). The retracted studies will be moved to the Excluded Studies table, and their impact on the review findings will be investigated and acted on accordingly in a future update. Initial checks indicate that removal of the six retracted studies did not make an appreciable difference to the results. Likewise, the studies for which Expressions of Concern were issued will be moved to the Awaiting classification table; they did not report any review outcomes, so removal will have no impact on the review findings.
A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility.
To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women.
We searched the following databases (from their inception to September 2019), with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of relevant studies and searched the trial registers.
We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility.
We used standard methodological procedures expected by Cochrane. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events.
We included 63 trials involving 7760 women. Investigators compared oral antioxidants, including: combinations of antioxidants, N-acetylcysteine, melatonin, L-arginine, myo-inositol, carnitine, selenium, vitamin E, vitamin B complex, vitamin C, vitamin D+calcium, CoQ10, and omega-3-polyunsaturated fatty acids versus placebo, no treatment/standard treatment or another antioxidant. Only 27 of the 63 included trials reported funding sources. Due to the very low-quality of the evidence we are uncertain whether antioxidants improve live birth rate compared with placebo or no treatment/standard treatment (odds ratio (OR) 1.81, 95% confidence interval (CI) 1.36 to 2.43; P < 0.001, I2 = 29%; 13 RCTs, 1227 women). This suggests that among subfertile women with an expected live birth rate of 19%, the rate among women using antioxidants would be between 24% and 36%. Low-quality evidence suggests that antioxidants may improve clinical pregnancy rate compared with placebo or no treatment/standard treatment (OR 1.65, 95% CI 1.43 to 1.89; P < 0.001, I2 = 63%; 35 RCTs, 5165 women). This suggests that among subfertile women with an expected clinical pregnancy rate of 19%, the rate among women using antioxidants would be between 25% and 30%. Heterogeneity was moderately high. Overall 28 trials reported on various adverse events in the meta-analysis. The evidence suggests that the use of antioxidants makes no difference between the groups in rates of miscarriage (OR 1.13, 95% CI 0.82 to 1.55; P = 0.46, I2 = 0%; 24 RCTs, 3229 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of multiple pregnancy (OR 1.00, 95% CI 0.63 to 1.56; P = 0.99, I2 = 0%; 9 RCTs, 1886 women; low-quality evidence). There was also no evidence of a difference between the groups in rates of gastrointestinal disturbances (OR 1.55, 95% CI 0.47 to 5.10; P = 0.47, I2 = 0%; 3 RCTs, 343 women; low-quality evidence). Low-quality evidence showed that there was also no difference between the groups in rates of ectopic pregnancy (OR 1.40, 95% CI 0.27 to 7.20; P = 0.69, I2 = 0%; 4 RCTs, 404 women). In the antioxidant versus antioxidant comparison, low-quality evidence shows no difference in a lower dose of melatonin being associated with an increased live-birth rate compared with higher-dose melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). This suggests that among subfertile women with an expected live-birth rate of 24%, the rate among women using a lower dose of melatonin compared to a higher dose would be between 12% and 40%. Similarly with clinical pregnancy, there was no evidence of a difference between the groups in rates between a lower and a higher dose of melatonin (OR 0.94, 95% CI 0.41 to 2.15; P = 0.89, I2 = 0%; 2 RCTs, 140 women). Three trials reported on miscarriage in the antioxidant versus antioxidant comparison (two used doses of melatonin and one compared N-acetylcysteine versus L-carnitine). There were no miscarriages in either melatonin trial. Multiple pregnancy and gastrointestinal disturbances were not reported, and ectopic pregnancy was reported by only one trial, with no events. The study comparing N-acetylcysteine with L-carnitine did not report live birth rate. Very low-quality evidence shows no evidence of a difference in clinical pregnancy (OR 0.81, 95% CI 0.33 to 2.00; 1 RCT, 164 women; low-quality evidence). Low quality evidence shows no difference in miscarriage (OR 1.54, 95% CI 0.42 to 5.67; 1 RCT, 164 women; low-quality evidence). The study did not report multiple pregnancy, gastrointestinal disturbances or ectopic pregnancy. The overall quality of evidence was limited by serious risk of bias associated with poor reporting of methods, imprecision and inconsistency.
In this review, there was low- to very low-quality evidence to show that taking an antioxidant may benefit subfertile women. Overall, there is no evidence of increased risk of miscarriage, multiple births, gastrointestinal effects or ectopic pregnancies, but evidence was of very low quality. At this time, there is limited evidence in support of supplemental oral antioxidants for subfertile women.
Showell MG
,Mackenzie-Proctor R
,Jordan V
,Hart RJ
... -
《Cochrane Database of Systematic Reviews》