Restricted feeding of weight control diets induces weight loss and affects body composition, voluntary physical activity, blood metabolites, hormones, and oxidative stress markers, and fecal metabolites and microbiota of obese cats.
Feline obesity puts many cats at risk for comorbidities such as hepatic lipidosis, diabetes mellitus, urinary tract diseases, and others. Restricted feeding of specially formulated diets may improve feline health and safely support weight loss while maintaining lean mass. The objective of this study was to determine the effects of restricted intake of weight control diets on weight loss, body composition, voluntary physical activity, serum metabolic and inflammatory markers, and fecal metabolites and microbiota of obese cats. Twenty-four obese adult domestic shorthair cats [body weight (BW) = 5.51 ± 0.92 kg; body condition score (BCS) = 8.44 ± 0.53] were used. A leading grocery brand diet was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline (week 0), cats were allotted to one of 2 weight control diets (DRY or CAN) and fed to lose 1.5% BW per week for 18 wk. At baseline and 6, 12, 18 wk after weight loss, dual-energy x-ray absorptiometry scans were performed, blood and fecal samples were collected, and voluntary physical activity was measured. Change from baseline data was analyzed statistically using the Mixed Models procedure of SAS, with P < 0.05 being significant and P < 0.10 being trends. BW was reduced by 1.54 ± 0.51% per week. Restricted feeding of both diets led to BW (P < 0.01) and fat mass loss (P < 0.01), reduced BCS (P < 0.01), reduced leptin (P < 0.01) and insulin (P < 0.01) concentrations, and increased superoxide dismutase (P < 0.01) and active ghrelin (P < 0.01) concentrations. Change from baseline fecal scores was reduced (P < 0.01) with restricted feeding and weight loss, while total short-chain fatty acid, acetate, and propionate concentration reductions were greater (P < 0.05) in cats fed CAN than those fed DRY. Fecal bacterial alpha diversity measures increased (P < 0.01) with restricted feeding and weight loss. Fecal bacterial beta diversity was altered by time in all cats, with week 0 being different (P < 0.05) than weeks 6, 12, and 18. Change from baseline relative abundances of 3 fecal bacterial phyla and over 30 fecal bacterial genera were impacted (P < 0.05) or tended to be impacted (P < 0.10) by dietary treatment. Our data demonstrate that restricted feeding of both weight control diets was an effective means for weight loss in obese adult domestic cats. Some changes were also impacted by diet, highlighting the importance of diet formulation and format, and nutrient composition in weight control diets.
Opetz DL
,Oba PM
,Lin CY
,Ren P
,Swanson KS
... -
《-》
Cecal metabolomics of 2 divergently selected rabbit lines revealed microbial mechanisms correlated to intramuscular fat deposition.
The gastrointestinal microbiota plays a key role in the host physiology and health through a complex host-microbiota co-metabolism. Metabolites produced by microbial metabolism can travel through the bloodstream to reach distal organs and affect their function, ultimately influencing the development of relevant production traits such as meat quality. Meat quality is a complex trait made up of a number of characteristics and intramuscular fat content (IMF) is considered to be one of the most important parameters. In this study, 52 rabbits from 2 lines divergently selected for IMF (high-IMF (H) and low-IMF (L) lines) were used to perform an untargeted metabolomic analysis of their cecal content, with the aim to obtain information on genetically determined microbial metabolism related to IMF. A large, correlated response to selection was found in their cecal metabolome composition. Partial least squares discriminant analysis was used to identify the pathways differentiating the lines, which showed a classification accuracy of 99%. On the other hand, 2 linear partial least squares analyses were performed, one for each line, to extract evidence on the specific pathways associated with IMF deposition within each line, which showed predictive abilities (estimated using the Q2) of approximately 60%. The most relevant pathways differentiating the lines were those related to amino acids (aromatic, branched-chain, and gamma-glutamyl), secondary bile acids, and purines. The higher content of secondary bile acids in the L-line was related to greater lipid absorption, while the differences found in purines suggested different fermentation activities, which could be related to greater nitrogen utilization and energy efficiency in the L-line. The linear analyses showed that lipid metabolism had a greater relative importance for IMF deposition in the L-line, whereas a more complex microbial metabolism was associated with the H-line. The lysophospholipids and gamma-glutamyl amino acids were associated with IMF in both lines; the nucleotide and secondary bile acid metabolisms were mostly associated in the H-line; and the long-chain and branched-chain fatty acids were mostly associated in the L-line. A metabolic signature consisting of 2 secondary bile acids and 2 protein metabolites was found with 88% classification accuracy, pointing to the interaction between lipid absorption and protein metabolism as a relevant driver of the microbiome activity influencing IMF.
Zubiri-Gaitán A
,Martínez-Álvaro M
,Blasco A
,Hernández P
... -
《-》
Gut bacterium Intestinimonas butyriciproducens improves host metabolic health: evidence from cohort and animal intervention studies.
The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease. It is therefore of interest to investigate the causal role of this bacterium and fructoselysine metabolism in metabolic disorders.
We assessed associations of I. butyriciproducens with metabolic risk biomarkers at both strain and functional levels using a human cohort characterized by fecal metagenomic analysis. We observed that the level of the bacterial strain as well as fructoselysine fermentation genes were negatively associated with BMI, triglycerides, HbA1c, and fasting insulin levels. We also investigated the fructoselysine degradation capacity within the Intestinimonas genus using a culture-dependent approach and found that I. butyriciproducens is a key player in the butyrogenic fructoselysine metabolism in the gut. To investigate the function of I. butyriciproducens in host metabolism, we used the diet-induced obesity mouse model to mimic the human metabolic syndrome. Oral supplementation with I. butyriciproducens counteracted body weight gain, hyperglycemia, and adiposity. In addition, within the inguinal white adipose tissue, bacterial administration reduced inflammation and promoted pathways involved in browning and insulin signaling. The observed effects may be partly attributable to the formation of the short-chain fatty acids butyrate from dietary fructoselysine, as butyrate plasma and cecal levels were significantly increased by the bacterial strain, thereby contributing to the systemic effects of the bacterial treatment.
I. butyriciproducens ameliorates host metabolism in the context of obesity and may therefore be a good candidate for new microbiota-therapeutic approaches to prevent or treat metabolic diseases. Video Abstract.
Rampanelli E
,Romp N
,Troise AD
,Ananthasabesan J
,Wu H
,Gül IS
,De Pascale S
,Scaloni A
,Bäckhed F
,Fogliano V
,Nieuwdorp M
,Bui TPN
... -
《Microbiome》
Effects of a veterinary gastrointestinal low-fat diet on fecal characteristics, metabolites, and microbiota concentrations of adult dogs treated with metronidazole.
Antibiotics are known to cause loose stools, disrupt the fecal microbiota, and alter fecal bile acid (BA) profiles of dogs. Recovery may be aided by diet, but little research has been conducted. The objective of this study was to determine how a veterinary low-fat diet affected the fecal characteristics, metabolites, BA, and microbiota of dogs receiving antibiotics. Twenty-four healthy adult dogs [7.38 ± 1.95 yr; 7.67 ± 0.76 kg body weight (BW)] were used in an 8-wk completely randomized design study. During a 2-wk baseline, all dogs were fed a leading grocery brand diet (GBD). Over the next 2 wk, dogs were fed GBD and received metronidazole orally (20 mg/kg BW twice daily). At week 4, dogs were randomly allotted to one of two treatments [GBD or Blue Buffalo Natural Veterinary Diet GI Gastrointestinal Support Low-Fat (BB)] and fed for 4 wk. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, 7, and 8 for measurement of pH, dry matter content, and metabolite and BA concentrations. Fecal microbiota populations were analyzed using 16S rRNA gene amplicon sequencing and qPCR-based dysbiosis index (DI). All data were analyzed as repeated measures using the Mixed Models procedure of SAS 9.4, testing for effects of treatment, time, and treatment*time and significance set at P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools), reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations, increased primary BA concentrations, and decreased secondary BA concentrations. Metronidazole also reduced fecal bacterial alpha diversity, altered the abundance of 58 bacterial genera, and increased DI. During antibiotic recovery, changes in fecal pH, dry matter percentage, and metabolite and immunoglobulin A concentrations were altered (P < 0.05) by diet. Fecal BA concentrations recovered quickly for all dogs. Change in lithocholic acid was affected (P < 0.0001) by diet, but other BA were not. Recovery of over 25 bacterial genera was impacted by diet (P < 0.05). While many bacterial taxa returned to baseline levels after 4 wk, others did not fully recover. DI and bacterial alpha diversity measures recovered quickly for all dogs but were not impacted by diet. In conclusion, metronidazole drastically altered the fecal microbiota and metabolites of dogs. While most variables returned to baseline by week 8, diet may be used to aid in recovery.
Belchik SE
,Oba PM
,Lin CY
,Swanson KS
... -
《-》