Computer-Assisted Diagnosis of Lymph Node Metastases in Colorectal Cancers Using Transfer Learning With an Ensemble Model.
Screening of lymph node metastases in colorectal cancer (CRC) can be a cumbersome task, but it is amenable to artificial intelligence (AI)-assisted diagnostic solution. Here, we propose a deep learning-based workflow for the evaluation of CRC lymph node metastases from digitized hematoxylin and eosin-stained sections. A segmentation model was trained on 100 whole-slide images (WSIs). It achieved a Matthews correlation coefficient of 0.86 (±0.154) and an acceptable Hausdorff distance of 135.59 μm (±72.14 μm), indicating a high congruence with the ground truth. For metastasis detection, 2 models (Xception and Vision Transformer) were independently trained first on a patch-based breast cancer lymph node data set and were then fine-tuned using the CRC data set. After fine-tuning, the ensemble model showed significant improvements in the F1 score (0.797-0.949; P <.00001) and the area under the receiver operating characteristic curve (0.959-0.978; P <.00001). Four independent cohorts (3 internal and 1 external) of CRC lymph nodes were used for validation in cascading segmentation and metastasis detection models. Our approach showed excellent performance, with high sensitivity (0.995, 1.0) and specificity (0.967, 1.0) in 2 validation cohorts of adenocarcinoma cases (n = 3836 slides) when comparing slide-level labels with the ground truth (pathologist reports). Similarly, an acceptable performance was achieved in a validation cohort (n = 172 slides) with mucinous and signet-ring cell histology (sensitivity, 0.872; specificity, 0.936). The patch-based classification confidence was aggregated to overlay the potential metastatic regions within each lymph node slide for visualization. We also applied our method to a consecutive case series of lymph nodes obtained over the past 6 months at our institution (n = 217 slides). The overlays of prediction within lymph node regions matched 100% when compared with a microscope evaluation by an expert pathologist. Our results provide the basis for a computer-assisted diagnostic tool for easy and efficient lymph node screening in patients with CRC.
Khan A
,Brouwer N
,Blank A
,Müller F
,Soldini D
,Noske A
,Gaus E
,Brandt S
,Nagtegaal I
,Dawson H
,Thiran JP
,Perren A
,Lugli A
,Zlobec I
... -
《-》
Artificial Intelligence-Aided Diagnosis of Breast Cancer Lymph Node Metastasis on Histologic Slides in a Digital Workflow.
Identifying lymph node (LN) metastasis in invasive breast carcinoma can be tedious and time-consuming. We investigated an artificial intelligence (AI) algorithm to detect LN metastasis by screening hematoxylin and eosin (H&E) slides in a clinical digital workflow. The study included 2 sentinel LN (SLN) cohorts (a validation cohort with 234 SLNs and a consensus cohort with 102 SLNs) and 1 nonsentinel LN cohort (258 LNs enriched with lobular carcinoma and postneoadjuvant therapy cases). All H&E slides were scanned into whole slide images in a clinical digital workflow, and whole slide images were automatically batch-analyzed using the Visiopharm Integrator System (VIS) metastasis AI algorithm. For the SLN validation cohort, the VIS metastasis AI algorithm detected all 46 metastases, including 19 macrometastases, 26 micrometastases, and 1 with isolated tumor cells with a sensitivity of 100%, specificity of 41.5%, positive predictive value of 29.5%, and negative predictive value (NPV) of 100%. The false positivity was caused by histiocytes (52.7%), crushed lymphocytes (18.2%), and others (29.1%), which were readily recognized during pathologists' reviews. For the SLN consensus cohort, 3 pathologists examined all VIS AI annotated H&E slides and cytokeratin immunohistochemistry slides with similar average concordance rates (99% for both modalities). However, the average time consumed by pathologists using VIS AI annotated slides was significantly less than using immunohistochemistry slides (0.6 vs 1.0 minutes, P = .0377). For the nonsentinel LN cohort, the AI algorithm detected all 81 metastases, including 23 from lobular carcinoma and 31 from postneoadjuvant chemotherapy cases, with a sensitivity of 100%, specificity of 78.5%, positive predictive value of 68.1%, and NPV of 100%. The VIS AI algorithm showed perfect sensitivity and NPV in detecting LN metastasis and less time consumed, suggesting its potential utility as a screening modality in routine clinical digital pathology workflow to improve efficiency.
Challa B
,Tahir M
,Hu Y
,Kellough D
,Lujan G
,Sun S
,Parwani AV
,Li Z
... -
《-》
Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study.
Accurate lymph node staging is important for the diagnosis and treatment of patients with bladder cancer. We aimed to develop a lymph node metastases diagnostic model (LNMDM) on whole slide images and to assess the clinical effect of an artificial intelligence-assisted (AI) workflow.
In this retrospective, multicentre, diagnostic study in China, we included consecutive patients with bladder cancer who had radical cystectomy and pelvic lymph node dissection, and from whom whole slide images of lymph node sections were available, for model development. We excluded patients with non-bladder cancer and concurrent surgery, or low-quality images. Patients from two hospitals (Sun Yat-sen Memorial Hospital of Sun Yat-sen University and Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China) were assigned before a cutoff date to a training set and after the date to internal validation sets for each hospital. Patients from three other hospitals (the Third Affiliated Hospital of Sun Yat-sen University, Nanfang Hospital of Southern Medical University, and the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China) were included as external validation sets. A validation subset of challenging cases from the five validation sets was used to compare performance between the LNMDM and pathologists, and two other datasets (breast cancer from the CAMELYON16 dataset and prostate cancer from the Sun Yat-sen Memorial Hospital of Sun Yat-sen University) were collected for a multi-cancer test. The primary endpoint was diagnostic sensitivity in the four prespecified groups (ie, the five validation sets, a single-lymph-node test set, the multi-cancer test set, and the subset for a performance comparison between the LNMDM and pathologists).
Between Jan 1, 2013 and Dec 31, 2021, 1012 patients with bladder cancer had radical cystectomy and pelvic lymph node dissection and were included (8177 images and 20 954 lymph nodes). We excluded 14 patients (165 images) with concurrent non-bladder cancer and also excluded 21 low-quality images. We included 998 patients and 7991 images (881 [88%] men; 117 [12%] women; median age 64 years [IQR 56-72]; ethnicity data not available; 268 [27%] with lymph node metastases) to develop the LNMDM. The area under the curve (AUC) for accurate diagnosis of the LNMDM ranged from 0·978 (95% CI 0·960-0·996) to 0·998 (0·996-1·000) in the five validation sets. Performance comparisons between the LNMDM and pathologists showed that the diagnostic sensitivity of the model (0·983 [95% CI 0·941-0·998]) substantially exceeded that of both junior pathologists (0·906 [0·871-0·934]) and senior pathologists (0·947 [0·919-0·968]), and that AI assistance improved sensitivity for both junior (from 0·906 without AI to 0·953 with AI) and senior (from 0·947 to 0·986) pathologists. In the multi-cancer test, the LNMDM maintained an AUC of 0·943 (95% CI 0·918-0·969) in breast cancer images and 0·922 (0·884-0·960) in prostate cancer images. In 13 patients, the LNMDM detected tumour micrometastases that had been missed by pathologists who had previously classified these patients' results as negative. Receiver operating characteristic curves showed that the LNMDM would enable pathologists to exclude 80-92% of negative slides while maintaining 100% sensitivity in clinical application.
We developed an AI-based diagnostic model that did well in detecting lymph node metastases, particularly micrometastases. The LNMDM showed substantial potential for clinical applications in improving the accuracy and efficiency of pathologists' work.
National Natural Science Foundation of China, the Science and Technology Planning Project of Guangdong Province, the National Key Research and Development Programme of China, and the Guangdong Provincial Clinical Research Centre for Urological Diseases.
Wu S
,Hong G
,Xu A
,Zeng H
,Chen X
,Wang Y
,Luo Y
,Wu P
,Liu C
,Jiang N
,Dang Q
,Yang C
,Liu B
,Shen R
,Chen Z
,Liao C
,Lin Z
,Wang J
,Lin T
... -
《-》
Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorecta
When endoscopically resected specimens of early colorectal cancer (CRC) show high-risk features, surgery should be performed based on current guidelines because of the high-risk of lymph node metastasis (LNM). The aim of this study was to determine the utility of an artificial intelligence (AI) with deep learning (DL) of hematoxylin and eosin (H&E)-stained endoscopic resection specimens without manual-pixel-level annotation for predicting LNM in T1 CRC. In addition, we assessed AI performance for patients with only submucosal (SM) invasion depth of 1000 to 2000 μm known to be difficult to predict LNM in clinical practice.
H&E-stained whole slide images (WSIs) were scanned for endoscopic resection specimens of 400 patients who underwent endoscopic treatment for newly diagnosed T1 CRC with additional surgery. The area under the curve (AUC) of the receiver operating characteristic curve was used to determine the accuracy of AI for predicting LNM with a fivefold cross-validation in the training set and in a held-out test set.
We developed an AI model using a two-step attention-based DL approach without clinical features (AUC, 0.764). Incorporating clinical features into the model did not improve its prediction accuracy for LNM. Our model reduced unnecessary additional surgery by 15.1% more than using the current guidelines (67.4% vs. 82.5%). In patients with SM invasion depth of 1000 to 2000 μm, the AI avoided 16.1% of unnecessary additional surgery than using the JSCCR guidelines.
Our study is the first to show that AI trained with DL of H&E-stained WSIs has the potential to predict LNM in T1 CRC using only endoscopically resected specimens with conventional histologic risk factors.
Song JH
,Hong Y
,Kim ER
,Kim SH
,Sohn I
... -
《-》