The feasibility study on the generalization of deep learning dose prediction model for volumetric modulated arc therapy of cervical cancer.
To develop a 3D-Unet dose prediction model to predict the three-dimensional dose distribution of volumetric modulated arc therapy (VMAT) for cervical cancer and test the dose prediction performance of the model in endometrial cancer to explore the feasibility of model generalization.
One hundred and seventeen cases of cervical cancer and 20 cases of endometrial cancer treated with VMAT were used for the model training, validation, and test. The prescribed dose was 50.4 Gy in 28 fractions. Eight independent channels of contoured structures were input to the model, and the dose distribution was used as the output of the model. The 3D-Unet prediction model was trained and validated on the training set (n = 86) and validation set (n = 11), respectively. Then the model was tested on the test set (n = 20) of cervical cancer and endometrial cancer, respectively. The results between clinical dose distribution and predicted dose distribution were compared in the following aspects: (a) the mean absolute error (MAE) within the body, (b) the Dice similarity coefficients (DSCs) under different isodose volumes, (c) the dosimetric indexes including the mean dose (Dmean ), the received dose of 2 cm3 (D2cc) , the percentage volume of receiving 40 Gy dose of organs-at-risk (V40 ), planning target volume (PTV) D98% , and homogeneity index (HI), (d) dose-volume histograms (DVHs).
The model can accurately predict the dose distribution of the VMAT plan for cervical cancer and endometrial cancer. The overall average MAE and maximum MAE for cervical cancer were 2.43 ± 3.17% and 3.16 ± 4.01% of the prescribed dose, respectively, and for endometrial cancer were 2.70 ± 3.54% and 3.85 ± 3.11%. The average DSCs under different isodose volumes is above 0.9. The predicted dosimetric indexes and DVHs are equivalent to the clinical dose for both cervical cancer and endometrial cancer, and there is no statistically significant difference.
A 3D-Unet dose prediction model was developed for VMAT of cervical cancer, which can predict the dose distribution accurately for cervical cancer. The model can also be generalized for endometrial cancer with good performance.
Qilin Z
,Peng B
,Ang Q
,Weijuan J
,Ping J
,Hongqing Z
,Bin D
,Ruijie Y
... -
《Journal of Applied Clinical Medical Physics》
A deep learning model to predict dose-volume histograms of organs at risk in radiotherapy treatment plans.
To develop a deep learning-based model to predict achievable dose-volume histograms (DVHs) of organs at risk (OARs) for automation of inverse planning.
The model was based on a connected residual deconvolution network (CResDevNet) and compared with UNet as a baseline. The DVHs of OARs are dependent on patient anatomical features of the planning target volumes and OARs, and these spatial relationships can be learned automatically from prior high-quality plans. The contours of planning target volumes and OARs were parsed from the plan database and used as the input to the model, and the dose-area histograms (DAHs) of the OARs were output from the model. The model was trained from scratch by correlating anatomical features with DAHs of OARs, then accumulating these histograms to obtain the final predicted DVH for each OAR. Helical tomotherapy plans for 170 nasopharyngeal cancer patients were used to train and validate the model. An additional 60 patient treatment plans were used to test the predictive accuracy of the model. The DVHs and dose-volume indices (DVIs) of clinical interest for each OAR in the testing dataset were predicted to evaluate the accuracy of the models. The mean absolute errors in the DVIs for each OAR were calculated using each model and statistically compared using a paired-samples t-test. Dice similarity coefficients for areas of the DVHs were also evaluated.
Dose-volume histograms of 21 OARs in nasopharyngeal cancer were predicted using the models. For each patient, 63 DVIs for all OARs were calculated. Using the 60 patient treatment plans in the testing dataset, 79% and 73% of the DVIs predicted using the CResDevNet and UNet models, respectively, were within 5% of the clinical values. The median value of the DVIs' mean absolute errors was 3.2 ± 2.5% and 3.7 ± 2.9% for the CResDevNet and UNet models, respectively. The average dice similarity coefficient for all OARs was 0.965 using the CResDevNet model and 0.958 using the UNet model.
A deep learning model was developed for predicting achievable DVHs of OARs. The prediction accuracy of the CResDevNet model was evaluated using a planning database of nasopharyngeal cancer cases and shown to be more accurate than the UNet model. Prediction accuracy was also higher for larger-volume OARs. The model can be used for automation of inverse planning and quality assessment of individual treatment plans.
Liu Z
,Chen X
,Men K
,Yi J
,Dai J
... -
《-》
Attention 3D U-NET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Direction modulated brachytherapy tandem applicator.
Direction Modulated Brachytherapy (DMBT) enables conformal dose distributions. However, clinicians may face challenges in creating viable treatment plans within a fast-paced clinical setting, especially for a novel technology like DMBT, where cumulative clinical experience is limited. Deep learning-based dose prediction methods have emerged as effective tools for enhancing efficiency.
To develop a voxel-wise dose prediction model using an attention-gating mechanism and a 3D UNET for cervical cancer high-dose-rate (HDR) brachytherapy treatment planning with DMBT six-groove tandems with ovoids or ring applicators.
A multi-institutional cohort of 122 retrospective clinical HDR brachytherapy plans treated to a prescription dose in the range of 4.8-7.0 Gy/fraction was used. A DMBT tandem model was constructed and incorporated onto a research version of BrachyVision Treatment Planning System (BV-TPS) as a 3D solid model applicator and retrospectively re-planned all cases by seasoned experts. Those plans were randomly divided into 64:16:20 as training, validating, and testing cohorts, respectively. Data augmentation was applied to the training and validation sets to increase the size by a factor of 4. An attention-gated 3D UNET architecture model was developed to predict full 3D dose distributions based on high-risk clinical target volume (CTVHR) and organs at risk (OARs) contour information. The model was trained using the mean absolute error loss function, Adam optimization algorithm, a learning rate of 0.001, 250 epochs, and a batch size of eight. In addition, a baseline UNET model was trained similarly for comparison. The model performance was evaluated on the testing dataset by analyzing the outcomes in terms of mean dose values and derived dose-volume-histogram indices from 3D dose distributions and comparing the generated dose distributions against the ground-truth dose distributions using dose statistics and clinically meaningful dosimetric indices.
The proposed attention-gated 3D UNET model showed competitive accuracy in predicting 3D dose distributions that closely resemble the ground-truth dose distributions. The average values of the mean absolute errors were 1.82 ± 29.09 Gy (vs. 6.41 ± 20.16 Gy for a baseline UNET) in CTVHR, 0.89 ± 1.25 Gy (vs. 0.94 ± 3.96 Gy for a baseline UNET) in the bladder, 0.33 ± 0.67 Gy (vs. 0.53 ± 1.66 Gy for a baseline UNET) in the rectum, and 0.55 ± 1.57 Gy (vs. 0.76 ± 2.89 Gy for a baseline UNET) in the sigmoid. The results showed that the mean absolute error (MAE) for the bladder, rectum, and sigmoid were 0.22 ± 1.22 Gy (3.62%) (p = 0.015), 0.21 ± 1.06 Gy (2.20%) (p = 0.172), and -0.03 ± 0.54 Gy (1.13%) (p = 0.774), respectively. The MAE for D90, V100%, and V150% of the CTVHR were 0.46 ± 2.44 Gy (8.14%) (p = 0.018), 0.57 ± 11.25% (5.23%) (p = 0.283), and -0.43 ± 19.36% (4.62%) (p = 0.190), respectively. The proposed model needs less than 5 s to predict a full 3D dose distribution of 64 × 64 × 64 voxels for any new patient plan, thus making it sufficient for near real-time applications and aiding with decision-making in the clinic.
Attention gated 3D-UNET model demonstrated a capability in predicting voxel-wise dose prediction, in comparison to 3D UNET, for DMBT intracavitary brachytherapy planning. The proposed model could be used to obtain dose distributions for near real-time decision-making before DMBT planning and quality assurance. This will guide future automated planning, making the workflow more efficient and clinically viable.
Gautam S
,Osman AFI
,Richeson D
,Gholami S
,Manandhar B
,Alam S
,Song WY
... -
《-》
Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy.
Many researchers have developed deep learning models for predicting clinical dose distributions and Pareto optimal dose distributions. Models for predicting Pareto optimal dose distributions have generated optimal plans in real time using anatomical structures and static beam orientations. However, Pareto optimal dose prediction for intensity-modulated radiation therapy (IMRT) prostate planning with variable beam numbers and orientations has not yet been investigated. We propose to develop a deep learning model that can predict Pareto optimal dose distributions by using any given set of beam angles, along with patient anatomy, as input to train the deep neural networks. We implement and compare two deep learning networks that predict with two different beam configuration modalities.
We generated Pareto optimal plans for 70 patients with prostate cancer. We used fluence map optimization to generate 500 IMRT plans that sampled the Pareto surface for each patient, for a total of 35 000 plans. We studied and compared two different models, Models I and II. Although they both used the same anatomical structures - including the planning target volume (PTV), organs at risk (OARs), and body - these models were designed with two different methods for representing beam angles. Model I directly uses beam angles as a second input to the network as a binary vector. Model II converts the beam angles into beam doses that are conformal to the PTV. We divided the 70 patients into 54 training, 6 validation, and 10 testing patients, thus yielding 27 000 training, 3000 validation, and 5000 testing plans. Mean square loss (MSE) was taken as the loss function. We used the Adam optimizer with a default learning rate of 0.01 to optimize the network's performance. We evaluated the models' performance by comparing their predicted dose distributions with the ground truth (Pareto optimal) dose distribution, in terms of dose volume histogram (DVH) plots and evaluation metrics such as PTV D98 , D95 , D50 , D2 , Dmax , Dmean , Paddick Conformation Number, R50, and Homogeneity index.
Our deep learning models predicted voxel-level dose distributions that precisely matched the ground truth dose distributions. The DVHs generated also precisely matched the ground truth. Evaluation metrics such as PTV statistics, dose conformity, dose spillage (R50), and homogeneity index also confirmed the accuracy of PTV curves on the DVH. Quantitatively, Model I's prediction error of 0.043 (confirmation), 0.043 (homogeneity), 0.327 (R50), 2.80% (D95), 3.90% (D98), 0.6% (D50), and 1.10% (D2) was lower than that of Model II, which obtained 0.076 (confirmation), 0.058 (homogeneity), 0.626 (R50), 7.10% (D95), 6.50% (D98), 8.40% (D50), and 6.30% (D2). Model I also outperformed Model II in terms of the mean dose error and the max dose error on the PTV, bladder, rectum, left femoral head, and right femoral head.
Treatment planners who use our models will be able to use deep learning to control the trade-offs between the PTV and OAR weights, as well as the beam number and configurations in real time. Our dose prediction methods provide a stepping stone to building automatic IMRT treatment planning.
Bohara G
,Sadeghnejad Barkousaraie A
,Jiang S
,Nguyen D
... -
《-》