Identification of Lipotoxicity-Related Biomarkers in Diabetic Nephropathy Based on Bioinformatic Analysis.
Objective: This study is aimed at investigating diagnostic biomarkers associated with lipotoxicity and the molecular mechanisms underlying diabetic nephropathy (DN). Methods: The GSE96804 dataset from the Gene Expression Omnibus (GEO) database was utilized to identify differentially expressed genes (DEGs) in DN patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the DEGs. A protein-protein interaction (PPI) network was established to identify key genes linked to lipotoxicity in DN. Immune infiltration analysis was employed to identify immune cells with differential expression in DN and to assess the correlation between these immune cells and lipotoxicity-related hub genes. The findings were validated using the external dataset GSE104954. ROC analysis was performed to assess the diagnostic performance of the hub genes. The Gene set enrichment analysis (GSEA) enrichment method was utilized to analyze the key genes associated with lipotoxicity as mentioned above. Result: In this study, a total of 544 DEGs were identified. Among them, extracellular matrix (ECM), fatty acid metabolism, AGE-RAGE, and PI3K-Akt signaling pathways were significantly enriched. Combining the PPI network and lipotoxicity-related genes (LRGS), LUM and ALB were identified as lipotoxicity-related diagnostic biomarkers for DN. ROC analysis showed that the AUC values for LUM and ALB were 0.882 and 0.885, respectively. The AUC values for LUM and ALB validated in external datasets were 0.98 and 0.82, respectively. Immune infiltration analysis revealed significant changes in various immune cells during disease progression. Macrophages M2, mast cells activated, and neutrophils were significantly associated with all lipotoxicity-related hub genes. These key genes were enriched in fatty acid metabolism and extracellular matrix-related pathways. Conclusion: The identified lipotoxicity-related hub genes provide a deeper understanding of the development mechanisms of DN, potentially offering new theoretical foundations for the development of diagnostic biomarkers and therapeutic targets related to lipotoxicity in DN.
Nie H
,Yang H
,Cheng L
,Yu J
... -
《-》
Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis.
Diabetic nephropathy (DN), the most intractable complication in diabetes patients, can lead to proteinuria and progressive reduction of glomerular filtration rate (GFR), which seriously affects the quality of life of patients and is associated with high mortality. However, the lack of accurate key candidate genes makes diagnosis of DN very difficult. This study aimed to identify new potential candidate genes for DN using bioinformatics, and elucidated the mechanism of DN at the cellular transcriptional level.
The microarray dataset GSE30529 was downloaded from the Gene Expression Omnibus Database (GEO), and the differentially expressed genes (DEGs) were screened by R software. We used Gene Ontology (GO), gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify the signal pathways and genes. Protein-protein interaction (PPI) networks were constructed using the STRING database. The GSE30122 dataset was selected as the validation set. Receiver operating characteristic (ROC) curves were applied to evaluate the predictive value of genes. An area under curve (AUC) greater than 0.85 was considered to be of high diagnostic value. Several online databases were used to predict miRNAs and transcription factors (TFs) capable of binding hub genes. Cytoscape was used for constructing a miRNA-mRNA-TF network. The online database 'nephroseq' predicted the correlation between genes and kidney function. The serum level of creatinine, BUN, and albumin, and the urinary protein/creatinine ratio of the DN rat model were detected. The expression of hub genes was further verified through qPCR. Data were analyzed statistically using Student's t-test by the 'ggpubr' package.
A total of 463 DEGs were identified from GSE30529. According to enrichment analysis, DEGs were mainly enriched in the immune response, coagulation cascades, and cytokine signaling pathways. Twenty hub genes with the highest connectivity and several gene cluster modules were ensured using Cytoscape. Five high diagnostic hub genes were selected and verified by GSE30122. The MiRNA-mRNA-TF network suggested a potential RNA regulatory relationship. Hub gene expression was positively correlated with kidney injury. The level of serum creatinine and BUN in the DN group was higher than in the control group (unpaired t test, t = 3.391, df = 4, p = 0.0275, r = 0.861). Meanwhile, the DN group had a higher urinary protein/creatinine ratio (unpaired t test, t = 17.23, df = 16, p < 0.001, r = 0.974). QPCR results showed that the potential candidate genes for DN diagnosis included C1QB, ITGAM, and ITGB2.
We identified C1QB, ITGAM and ITGB2 as potential candidate genes for DN diagnosis and therapy and provided insight into the mechanisms of DN development at transcriptome level. We further completed the construction of miRNA-mRNA-TF network to propose potential RNA regulatory pathways adjusting disease progression in DN.
Hu Y
,Yu Y
,Dong H
,Jiang W
... -
《PeerJ》
Identification of immune-associated biomarkers of diabetes nephropathy tubulointerstitial injury based on machine learning: a bioinformatics multi-chip integrated analysis.
Diabetic nephropathy (DN) is a major microvascular complication of diabetes and has become the leading cause of end-stage renal disease worldwide. A considerable number of DN patients have experienced irreversible end-stage renal disease progression due to the inability to diagnose the disease early. Therefore, reliable biomarkers that are helpful for early diagnosis and treatment are identified. The migration of immune cells to the kidney is considered to be a key step in the progression of DN-related vascular injury. Therefore, finding markers in this process may be more helpful for the early diagnosis and progression prediction of DN.
The gene chip data were retrieved from the GEO database using the search term ' diabetic nephropathy '. The ' limma ' software package was used to identify differentially expressed genes (DEGs) between DN and control samples. Gene set enrichment analysis (GSEA) was performed on genes obtained from the molecular characteristic database (MSigDB. The R package 'WGCNA' was used to identify gene modules associated with tubulointerstitial injury in DN, and it was crossed with immune-related DEGs to identify target genes. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on differentially expressed genes using the 'ClusterProfiler' software package in R. Three methods, least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE) and random forest (RF), were used to select immune-related biomarkers for diagnosis. We retrieved the tubulointerstitial dataset from the Nephroseq database to construct an external validation dataset. Unsupervised clustering analysis of the expression levels of immune-related biomarkers was performed using the 'ConsensusClusterPlus 'R software package. The urine of patients who visited Dongzhimen Hospital of Beijing University of Chinese Medicine from September 2021 to March 2023 was collected, and Elisa was used to detect the mRNA expression level of immune-related biomarkers in urine. Pearson correlation analysis was used to detect the effect of immune-related biomarker expression on renal function in DN patients.
Four microarray datasets from the GEO database are included in the analysis : GSE30122, GSE47185, GSE99340 and GSE104954. These datasets included 63 DN patients and 55 healthy controls. A total of 9415 genes were detected in the data set. We found 153 differentially expressed immune-related genes, of which 112 genes were up-regulated, 41 genes were down-regulated, and 119 overlapping genes were identified. GO analysis showed that they were involved in various biological processes including leukocyte-mediated immunity. KEGG analysis showed that these target genes were mainly involved in the formation of phagosomes in Staphylococcus aureus infection. Among these 119 overlapping genes, machine learning results identified AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1 and FSTL1 as potential tubulointerstitial immune-related biomarkers. External validation suggested that the above markers showed diagnostic efficacy in distinguishing DN patients from healthy controls. Clinical studies have shown that the expression of AGR2, CX3CR1 and FSTL1 in urine samples of DN patients is negatively correlated with GFR, the expression of CX3CR1 and FSTL1 in urine samples of DN is positively correlated with serum creatinine, while the expression of DEFB1 in urine samples of DN is negatively correlated with serum creatinine. In addition, the expression of CX3CR1 in DN urine samples was positively correlated with proteinuria, while the expression of DEFB1 in DN urine samples was negatively correlated with proteinuria. Finally, according to the level of proteinuria, DN patients were divided into nephrotic proteinuria group (n = 24) and subrenal proteinuria group. There were significant differences in urinary AGR2, CCR2 and DEFB1 between the two groups by unpaired t test (P < 0.05).
Our study provides new insights into the role of immune-related biomarkers in DN tubulointerstitial injury and provides potential targets for early diagnosis and treatment of DN patients. Seven different genes ( AGR2, CCR2, CEBPD, CISH, CX3CR1, DEFB1, FSTL1 ), as promising sensitive biomarkers, may affect the progression of DN by regulating immune inflammatory response. However, further comprehensive studies are needed to fully understand their exact molecular mechanisms and functional pathways in DN.
Wang L
,Su J
,Liu Z
,Ding S
,Li Y
,Hou B
,Hu Y
,Dong Z
,Tang J
,Liu H
,Liu W
... -
《BioData Mining》