Substrate Use Prioritization by a Coculture of Five Species of Gut Bacteria Fed Mixtures of Arabinoxylan, Xyloglucan, β-Glucan, and Pectin.
Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology.IMPORTANCE This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.
Liu Y
,Heath AL
,Galland B
,Rehrer N
,Drummond L
,Wu XY
,Bell TJ
,Lawley B
,Sims IM
,Tannock GW
... -
《-》
Prebiotics and Community Composition Influence Gas Production of the Human Gut Microbiota.
Prebiotics confer benefits to human health, often by promoting the growth of gut bacteria that produce metabolites valuable to the human body, such as short-chain fatty acids (SCFAs). While prebiotic selection has strongly focused on maximizing the production of SCFAs, less attention has been paid to gases, a by-product of SCFA production that also has physiological effects on the human body. Here, we investigate how the content and volume of gas production by human gut microbiota are affected by the chemical composition of the prebiotic and the community composition of the microbiota. We first constructed a linear system model based on mass and electron balance and compared the theoretical product ranges of two prebiotics, inulin and pectin. Modeling shows that pectin is more restricted in product space, with less potential for H2 but more potential for CO2 production. An ex vivo experimental system showed pectin degradation produced significantly less H2 than inulin, but CO2 production fell outside the theoretical product range, suggesting fermentation of fecal debris. Microbial community composition also impacted results: methane production was dependent on the presence of Methanobacteria, while interindividual differences in H2 production during inulin degradation were driven by a Lachnospiraceae taxon. Overall, these results suggest that both the chemistry of the prebiotic and the composition of the microbiota are relevant to gas production. Metabolic processes that are relatively prevalent in the microbiome, such as H2 production, will depend more on substrate, while rare metabolisms such as methanogenesis depend more strongly on microbiome composition.IMPORTANCE Prebiotic fermentation in the gut often leads to the coproduction of short-chain fatty acids (SCFAs) and gases. While excess gas production can be a potential problem for those with functional gut disorders, gas production is rarely considered during prebiotic design. In this study, we combined the use of theoretical models and an ex vivo experimental platform to illustrate that both the chemical composition of the prebiotic and the community composition of the human gut microbiota can affect the volume and content of gas production during prebiotic fermentation. Specifically, more prevalent metabolic processes such as hydrogen production were strongly affected by the oxidation state of the probiotic, while rare metabolisms such as methane production were less affected by the chemical nature of the substrate and entirely dependent on the presence of Methanobacteria in the microbiota.
Yu X
,Gurry T
,Nguyen LTT
,Richardson HS
,Alm EJ
... -
《mBio》
Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer.
Background: Anti-PD-1-based immunotherapy has emerged as a promising therapy for several cancers. However, it only benefits a small subset of colorectal cancer (CRC) patients. Mounting data supports the pivotal role of gut microbiota in shaping immune system. Pectin, a widely consumed soluble fiber, has been reported to ameliorate the imbalance of gut microbiota. Therefore, we aimed to explore the effect and the underlying mechanisms of pectin in improving anti-PD-1 mAb efficacy. Methods: The C57BL/6 mice were treated with a broad-spectrum antibiotic (ATB) cocktail to depleted endogenous gut microbiota and subsequently humanized with feces from healthy controls or newly diagnosed CRC patients. The antitumor efficacies of anti-PD-1 mAb combined with or without pectin were assessed using these mice. Flow cytometry and immunohistochemistry (IHC) were conducted to investigate the tumor immune microenvironment after treatment. The gut microbiota profiles and short-chain fatty acids (SCFAs) levels were determined by 16S ribosomal RNA (16S rRNA) gene sequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The effect of gut microbiota on anti-PD-1 mAb efficacy after pectin supplement was further tested by fecal microbiota transplantation (FMT). Results: The anti-PD-1 mAb efficacy was largely impaired in the mice humanized with feces from newly diagnosed CRC patients compared to those from healthy controls. However, pectin significantly enhanced the anti-PD-1 mAb efficacy in the tumor-bearing mice humanized with CRC patient gut microbiota. Flow cytometry and IHC analysis revealed increased T cell infiltration and activation in the tumor microenvironment of mice treated with anti-PD-1 mAb plus pectin. In vivo depletion of CD8+ T cells diminished the anti-tumor effect of anti-PD-1 mAb combined with pectin. 16S rRNA gene sequencing showed that pectin significantly increased gut microbial diversity and beneficially regulated microbial composition. In addition, we identified unique bacterial modules that were significantly enriched in the anti-PD-1 mAb + pectin group, which composed of butyrate-producing bacteria indicative of good response to immunotherapy. Meanwhile, GC-MS showed that pectin altered the level of SCFA butyrate. Furthermore, butyrate, a main product of dietary fiber in gut microbial fermentation, was found to be sufficient to promote T cells infiltration and thus enhance the efficacy of anti-PD-1 mAb. In addition, FMT demonstrated the effects of pectin were dependent on gut microbiota. Importantly, the beneficial effects of pectin were confirmed in the mice humanized with gut microbiota from patient with resistance to anti-PD-1 mAb. Conclusion: Pectin facilitated the anti-PD-1 mAb efficacy in CRC via regulating the T cell infiltration in the tumor microenvironment, which was potentially mediated by the metabolite butyrate.
Zhang SL
,Mao YQ
,Zhang ZY
,Li ZM
,Kong CY
,Chen HL
,Cai PR
,Han B
,Ye T
,Wang LS
... -
《Theranostics》
Dietary citrus pectin drives more ileal microbial protein metabolism and stronger fecal carbohydrate fermentation over fructo-oligosaccharide in growing pigs.
Fructo-oligosaccharide (FOS) and pectin are known soluble dietary fibers and can influence gut microbiota and consequently modulate gut health. To understand the differential impact patterns of pectin vs. FOS in modulating gut microbiota in the small and large intestine, an ileal-cannulated pig model was adopted to compare the temporal and spatial effects of FOS and citrus pectin (CP) on the gut microbiota. Sixteen terminal ileal-cannulated pigs were randomly divided into 2 groups and fed with a standard diet supplemented with either 3% FOS or 3% CP for 28 d. The CP group and FOS group showed different microbial composition, especially in the feces, with time and location as major factors affecting microbiota in the CP group, and with only location contribution in the FOS group. In the feces, relative to the FOS group, the CP group showed higher abundance of Christensenellaceae R-7 group and Ruminococcaceae UCG-010 and lower abundance of Mitsuokella and Olsenella (adjusted P < 0.05), a higher level of short-chain fatty acids and a lower level of lactate at both d 14 and 25 (P < 0.05), and more copy numbers of genes encoding key enzymes related to propionate (mmdA) and butyrate (BCoAT) production and lactate utilization (LcdA) (P < 0.05), indicating a greater degree of microbial carbohydrate fermentation. In the ileum, as compared with FOS, CP increased the bacteria with high capability of fermenting amino acids, including Escherichia-Shigella and Klebsiella (adjusted P < 0.05), and the expression of enzymes responsible for amino acid fermentation (i.e. lysine decarboxylase), as well as the amino acid fermentation products (cadaverine and tyramine) (P < 0.05), indicating a greater degree of amino acid fermentation. Overall, our results highlight a differential dynamic impact of dietary CP vs. FOS on microbial composition and metabolism in the gut. The dietary CP has a stronger ability to promote microbial amino acid fermentation in the ileum and carbohydrate fermentation in the feces than FOS. These findings provide a new insight into the role of different fibers in gut nutrition and guidelines for the choice of fibers in manipulating gut health.
Zhang Y
,Mu C
,Liu S
,Zhu W
... -
《Animal Nutrition》