In vitro study on efficacy of SKF7(®), a Malaysian medicinal plant product against SARS-CoV-2.

来自 PUBMED

摘要:

In early 2020, COVID-19 pandemic has mobilized researchers in finding new remedies including repurposing of medicinal plant products focusing on direct-acting antiviral and host-directed therapies. In this study, we performed an in vitro investigation on the standardized Marantodes pumilum extract (SKF7®) focusing on anti-SARS-CoV-2 and anti-inflammatory activities. Anti-SARS-CoV-2 potential of the SKF7® was evaluated in SARS-CoV-2-infected Vero E6 cells and SARS-CoV-2-infected A549 cells by cytopathic effect-based assay and RT-qPCR, respectively. Target based assays were performed on the SKF7® against the S1-ACE2 interaction and 3CL protease activities. Anti-inflammatory activity of the SKF7® was evaluated by nitric oxide inhibitory and TLR2/TLR4 receptor blocker assays. The SKF7® inhibited wild-type Wuhan (EC50 of 21.99 µg/mL) and omicron (EC50 of 16.29 µg/mL) SARS-CoV-2 infections in Vero-E6 cells. The SKF7® also inhibited the wild-type SARS-CoV-2 infection in A549 cells (EC50 value of 6.31 µg/mL). The SKF7® prominently inhibited 3CL protease activity. The SKF7® inhibited the LPS induced-TLR4 response with the EC50 of 16.19 µg/mL. In conclusion, our in vitro study highlighted anti-SARS-CoV-2 and anti-inflammatory potentials of the SKF7®. Future pre-clinical in vivo studies focusing on antiviral and immunomodulatory potentials of the SKF7® in affecting the COVID-19 pathogenesis are warranted.

收起

展开

DOI:

10.1186/s12906-024-04628-6

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(102)

参考文献(71)

引证文献(0)

来源期刊

BMC Complementary Medicine and Therapies

影响因子:2.835

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读