Scene context and attention independently facilitate MEG decoding of object category.
摘要:
Many of the objects we encounter in our everyday environments would be hard to recognize without any expectations about these objects. For example, a distant silhouette may be perceived as a car because we expect objects of that size, positioned on a road, to be cars. Reflecting the influence of such expectations on visual processing, neuroimaging studies have shown that when objects are poorly visible, expectations derived from scene context facilitate the representations of these objects in visual cortex from around 300 ms after scene onset. The current magnetoencephalography (MEG) study tested whether this facilitation occurs independently of attention and task relevance. Participants viewed degraded objects alone or within scene context while they either attended the scenes (attended condition) or the fixation cross (unattended condition), also temporally directing attention away from the scenes. Results showed that at 300 ms after stimulus onset, multivariate classifiers trained to distinguish clearly visible animate vs inanimate objects generalized to distinguish degraded objects in scenes better than degraded objects alone, despite the added clutter of the scene background. Attention also modulated object representations at this latency, with better category decoding in the attended than the unattended condition. The modulatory effects of context and attention were independent of each other. Finally, data from the current study and a previous study were combined (N = 51) to provide a more detailed temporal characterization of contextual facilitation. These results extend previous work by showing that facilitatory scene-object interactions are independent of the specific task performed on the visual input.
收起
展开
DOI:
10.1016/j.visres.2024.108484
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(104)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无