GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-β1/Smad2 signalling pathway.
This study investigated the effects of Golgi membrane protein 73 (GP73) on the epithelial-mesenchymal transition (EMT) and on bladder cancer cell invasion and metastasis through the TGF-β1/Smad2 signalling pathway. Paired bladder cancer and adjacent tissue samples (102) and normal bladder tissue samples (106) were obtained. Bladder cancer cell lines (T24, 5637, RT4, 253J and J82) were selected and assigned to blank, negative control (NC), TGF-β, thrombospondin-1 (TSP-1), TGF-β1+ TSP-1, GP73-siRNA-1, GP73-siRNA-2, GP73-siRNA-1+ TSP-1, GP73-siRNA-1+ pcDNA-GP73, WT1-siRNA and WT1-siRNA + GP73-siRNA-1 groups. Expressions of GP73, TGF-β1, Smad2, p-Smad2, E-cadherin and vimentin were detected using RT-qPCR and Western blotting. Cell proliferation, migration and invasion were determined using MTT assay, scratch testing and Transwell assay, respectively. Compared with the blank and NC groups, levels of GP73, TGF-β1, Smad2, p-Smad2, N-cadherin and vimentin decreased, and levels of WT1 and E-cadherin increased in the GP73-siRNA-1 and GP73-siRNA-2 groups, while the opposite results were observed in the WT1 siRNA, TGF-β, TSP-1 and TGF-β + TSP-1 groups. Cell proliferation, migration and invasion notably decreased in the GP73-siRNA-1 and GP73-siRNA-2 groups in comparison with the blank and NC groups, while in the WT1 siRNA, TGF-β, TSP-1 and TGF-β + TSP-1 groups, cell migration, invasion and proliferation showed the reduction after the EMT. These results suggest that GP73 promotes bladder cancer invasion and metastasis by inducing the EMT through down-regulating WT1 levels and activating the TGF-β1/Smad2 signalling pathway.
Yang HJ
,Liu GL
,Liu B
,Liu T
... -
《-》
Tumour necrosis factor-α-induced protein 8-like 2 is a novel regulator of proliferation, migration, and invasion in human rectal adenocarcinoma cells.
Tumour necrosis factor-α-induced protein 8-like 2 (TIPE2) is a tumour suppressor in many types of cancer. However, the mechanism of action of TIPE2 on the growth of rectal adenocarcinoma is unknown. Our results showed that the expression levels of TIPE2 in human rectal adenocarcinoma tissues were higher than those in adjacent non-tumour tissues. Overexpression of TIPE2 reduced the proliferation, migration, and invasion of human rectal adenocarcinoma cells and down-regulation of TIPE2 showed reverse effects. TIPE2 overexpression increased apoptosis through down-regulating the expression levels of Wnt3a, phospho (p)-β-Catenin, and p-glycogen synthase kinase-3β in rectal adenocarcinoma cells, however, TIPE2 knockdown exhibited reverse trends. TIPE2 overexpression decreased autophagy by reducing the expression levels of p-Smad2, p-Smad3, and transforming growth factor-beta (TGF-β) in rectal adenocarcinoma cells, however, TIPE2 knockdown showed opposite effects. Furthermore, TIPE2 overexpression reduced the growth of xenografted human rectal adenocarcinoma, whereas TIPE2 knockdown promoted the growth of rectal adenocarcinoma tumours by modulating angiogenesis. In conclusion, TIPE2 could regulate the proliferation, migration, and invasion of human rectal adenocarcinoma cells through Wnt/β-Catenin and TGF-β/Smad2/3 signalling pathways. TIPE2 is a potential therapeutic target for the treatment of rectal adenocarcinoma.
Wu DD
,Liu SY
,Gao YR
,Lu D
,Hong Y
,Chen YG
,Dong PZ
,Wang DY
,Li T
,Li HM
,Ren ZG
,Guo JC
,He F
,Ren XQ
,Sun SY
,Duan SF
,Ji XY
... -
《-》
KLF8 is activated by TGF-β1 via Smad2 and contributes to ovarian cancer progression.
Krüppel-like factor 8 (KLF8) is a transcription factor expressed abnormally in various cancer types and promotes oncogenic transformation. However, the role of KLF8 in ovarian cancer (OC) progression remains unclear. This study reports that transforming growth factor-β1 (TGF-β1)/Smad2/KLF8 axis regulates epithelial-mesenchymal transition (EMT) and contributes to OC progression. We analyzed the KLF8 expression in OC cells and tissues, wherein a significant overexpression of KLF8 was observed. Increased KLF8 expressions were correlated with higher cell proliferation, EMT, migration, and invasion and conferred poor clinical outcomes in OC patients. Overexpressed KLF8 increases F-actin polymerization and induces cytoskeleton remodeling of OC cells. Furthermore, a dissection of the molecular mechanism defined that TGF-β1 triggers KLF8 through the Smad2 pathway and regulates EMT. Pharmacological and genetic inhibition of Smad2 followed by TGF-β1 treatment failed to activate KLF8 expression and induction of EMT. Using promoter-luciferase reporter assays, we defined that upon TGF-β1 activation, phosphorylated Smad2 binds and promotes the KLF8 promoter activity, and knockdown of Smad2 inhibits KLF8 promoter activation. Together, these results demonstrate that TGF-β1 activates KLF8 expression by the Smad2 pathway, and KLF8 contributes to OC progression and may serve as a potential therapeutic strategy for treating OC patients.
Cherukunnath A
,Davargaon RS
,Ashraf R
,Kamdar U
,Srivastava AK
,Tripathi PP
,Chatterjee N
,Kumar S
... -
《-》