Composite activity type and stride-specific energy expenditure estimation model for thigh-worn accelerometry.
摘要:
Accurately measuring energy expenditure during physical activity outside of the laboratory is challenging, especially on a large scale. Thigh-worn accelerometers have gained popularity due to the possibility to accurately detect physical activity types. The use of machine learning techniques for activity classification and energy expenditure prediction may improve accuracy over current methods. Here, we developed a novel composite energy expenditure estimation model by combining an activity classification model with a stride specific energy expenditure model for walking, running, and cycling. We first trained a supervised deep learning activity classification model using pooled data from available adult accelerometer datasets. The composite energy expenditure model was then developed and validated using additional data based on a sample of 69 healthy adult participants (49% female; age = 25.2 ± 5.8 years) who completed a standardised activity protocol with indirect calorimetry as the reference measure. The activity classification model showed an overall accuracy of 99.7% across all five activity types during validation. The composite model for estimating energy expenditure achieved a mean absolute percentage error of 10.9%. For running, walking, and cycling, the composite model achieved a mean absolute percentage error of 6.6%, 7.9% and 16.1%, respectively. The integration of thigh-worn accelerometers with machine learning models provides a highly accurate method for classifying physical activity types and estimating energy expenditure. Our novel composite model approach improves the accuracy of energy expenditure measurements and supports better monitoring and assessment methods in non-laboratory settings.
收起
展开
DOI:
10.1186/s12966-024-01646-y
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(103)
参考文献(29)
引证文献(0)
来源期刊
影响因子:8.906
JCR分区: 暂无
中科院分区:暂无