-
Effect of bisphosphonate on bone microstructure, mechanical strength in osteoporotic rats by ovariectomy.
Bisphosphonate (BP) can treat osteoporosis and prevent osteoporotic fractures in clinical. However, the effect of BP on microstructure and mechanical properties of cortical and trabecular bone has been taken little attention, separately.
In this study, BP was used to intervene in ovariectomized female SD rats. The femoral micro-CT images were used to measure the structural parameters and reconstruct the 3D models in volume of interest. The structural parameters of cortical and trabecular bone were measured, and the mechanical properties were predicted using micro-finite element analysis.
There was almost no significant difference in the morphological structure parameters and mechanical properties of cortical bone between normal, ovariectomized (sham-OVX) and BP intervention groups. However, BP could significantly improve bone volume fraction (BV/TV) and trabecular separation (Tb.SP) in inter-femoral condyles (IT) (sham-OVX vs. BP, p < 0.001), and had no significant effect on BV/TV in medial and lateral femoral condyles (MT, LT). Similarly, BPs could significantly affect the effective modulus in IT (sham-OVX vs. BP, p < 0.001), and had no significant difference in MT and LT. In addition, the structural parameters and effective modulus showed a good linear correlation.
In a short time, the effects of BP intervention and osteoporosis on cortical bone were not obvious. The effects of BP on trabecular bone in non-main weight-bearing area (IT) were valuable, while for osteoporosis, the main weight-bearing area (MT, LT) may improve the structural quality and mechanical strength of trabecular bone through exercise compensation.
Wang Y
,Wu Z
,Li C
,Ma C
,Chen J
,Wang M
,Gao D
,Wu Y
,Wang H
... -
《BMC MUSCULOSKELETAL DISORDERS》
-
Effects of daily teriparatide, weekly high-dose teriparatide, or bisphosphonate on cortical and trabecular bone of vertebra and proximal femur in postmenopausal women with fragility fracture: Sub-analysis by quantitative computed tomography from the TERAB
The effects of daily teriparatide (D-PTH, 20 μg/day), weekly high-dose teriparatide (W-PTH, 56.5 μg/week), or bisphosphonate (BP) on the vertebra and proximal femur were investigated using quantitative computed tomography (QCT).
A total of 131 postmenopausal women with a history of fragility fractures were randomized to receive D-PTH, W-PTH, or bisphosphonate (oral alendronate or risedronate). QCT were evaluated at baseline and after 18 months of treatment.
A total of 86 participants were evaluated by QCT (Spine: D-PTH: 25, W-PTH: 21, BP: 29. Hip: PTH: 22, W-PTH: 21, BP: 32. Dropout rate: 30.5 %). QCT of the vertebra showed that D-PTH, W-PTH, and BP increased total vBMD (+34.8 %, +18.2 %, +11.1 %), trabecular vBMD (+50.8 %, +20.8 %, +12.2 %), and marginal vBMD (+20.0 %, +14.0 %, +11.5 %). The increase in trabecular vBMD was greater in the D-PTH group than in the W-PTH and BP groups. QCT of the proximal femur showed that D-PTH, W-PTH, and BP increased total vBMD (+2.8 %, +3.6 %, +3.2 %) and trabecular vBMD (+7.7 %, +5.1 %, +3.4 %), while only W-PTH and BP significantly increased cortical vBMD (-0.1 %, +1.5 %, +1.6 %). Although there was no significant increase in cortical vBMD in the D-PTH group, cortical bone volume (BV) increased in all three treatment groups (+2.1 %, +3.6 %, +3.1 %).
D-PTH had a strong effect on trabecular bone of vertebra. Although D-PTH did not increase cortical BMD of proximal femur, it increased cortical BV. W-PTH had a moderate effect on trabecular bone of vertebra, while it increased both cortical BMD and BV of proximal femur. Although BP had a limited effect on trabecular bone of vertebra compared to teriparatide, it increased both cortical BMD and BV of proximal femur.
Takahashi R
,Chiba K
,Okazaki N
,Era M
,Yokota K
,Yabe Y
,Kondo C
,Fukuda T
,Fukushima K
,Kono M
,Michikoshi Y
,Yamada S
,Iida T
,Mitsumizo K
,Sato S
,Doi M
,Watanabe K
,Ota S
,Shiraishi K
,Yonekura A
,Osaki M
... -
《-》
-
Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
《Jove-Journal of Visualized Experiments》
-
Combining systemic and local osteoporosis treatments: A longitudinal in vivo microCT study in ovariectomized rats.
Managing osteoporotic patients at immediate fracture risk is challenging, in part due to the slow and localized effects of anti-osteoporotic drugs. Combining systemic anti-osteoporotic therapies with local bone augmentation techniques offers a promising strategy, but little is known about potential interactions. We hypothesized that integrating systemic treatments with local bone-strengthening biomaterials would have an additive effect on bone density and structure. This study investigated interactions and synergies between systemic therapies and injectable biomaterials, HA2 and HA2-ZOL, designed for local bone strengthening. HA2-ZOL incorporates Zoledronate, a bisphosphonate, to enhance anti-resorptive effects. These materials were tested in an in vivo rat model of osteoporosis using microCT and histology.
Thirty-six ovariectomized Wistar rats were treated systemically with vehicle (VEH), alendronate (ALN), or parathyroid hormone (PTH). One week later, their tibiae were randomly assigned to local treatment groups: HA2, HA2-ZOL, or NaCl control. Bilateral injections targeted metaphyseal trabecular bone, with microCT scans tracking changes over 8 weeks. Regions of interest (ROIs) were identified and analyzed for bone volume fraction (BV/TV), tissue mineral density (TMD), and trabecular morphology. Histological analyses were performed at week 8 to assess bone structure and mineral inclusions.
VEH animals with NaCl injections experienced marked bone loss, partially mitigated by ALN and PTH. HA2 injections increased BV/TV by factors of 2.5 to 3.4 across treatments compared to baseline, with effects confined to the injected material. HA2-ZOL amplified this response, with BV/TV increases up to 4.8-fold, particularly in VEH and PTH animals. The effects peaked at 2-4 weeks post-injection, followed by remodeling and restoration. Both local treatments increased trabecular thickness, with HA2-ZOL showing slower post-peak resorption.
HA2 injections significantly densified bone, independent of systemic therapy. Zoledronate in HA2-ZOL enhanced bone formation and delayed resorption in control and PTH animals, but offered no additional benefit when combined with systemic bisphosphonate. These findings support the hypothesis of an additive effect, suggesting that injectable hydrogels with localized drug delivery can complement systemic therapies by rapidly increasing local bone density, thereby potentially preventing fractures in high-risk osteoporotic patients.
Stadelmann VA
,Gerossier E
,Kettenberger U
,Pioletti DP
... -
《-》
-
Osteoking inhibits apoptosis of BMSCs in osteoporotic rats via PI3K/AKT signaling pathway.
In China, Osteoking is a commonly used treatment and preventive measure for osteoporosis. The pathophysiology of osteoporosis is closely associated with apoptosis; however, it remains unclear whether the role of Osteoking in promoting bone formation is linked to apoptosis.
This study aims to investigate whether Osteoking inhibits apoptosis of BMSCs in osteoporotic rats via the PI3K/AKT signaling pathway and to conduct a detailed exploration of this mechanism. The goal is to provide a theoretical basis for the clinical application of Osteoking in osteoporosis treatment.
A rat model of osteoporosis was established through bilateral ovariectomy (OVX), followed by treatment with Osteoking. After ten weeks of therapy, BMD was evaluated. The biomechanics of the left tibia were measured, the left femur was sequenced, and the right tibia was stained using histomorphometric and Masson's staining methods. Peripheral serum was collected to measure bone-related markers, including E2, PINP, and CTX. RNA-Seq results were verified using the remaining bone samples. Comparative analysis demonstrated the efficacy of Osteoking in treating osteoporosis and provided preliminary insights into the underlying mechanisms. Primary BMSCs were cultured using bone marrow apposition. CCK8 assays were conducted to screen the intervention conditions of Osteoking and LY294002. Various concentrations of Osteoking-containing serum and LY294002 were tested separately to determine the optimal intervention concentration for drug delivery. The impact of Osteoking on lipid formation was also evaluated. Following treatment of BMSCs from OVX rats with Sham serum, OVX serum, OVX + LY294002 serum, and Osteoking + LY294002 serum, the expression of PI3K/AKT/mTOR, osteogenesis-related regulatory factors, and apoptosis-related regulatory factors was assessed. Flow cytometry was employed to evaluate apoptosis in BMSCs.
Osteoking significantly improved whole-body BMD and bone biomechanical indices in OVX rats. It also significantly elevated the serum levels of E2 and PINP while reducing the level of CTX, which significantly improved bone microstructure and promoted new bone formation. RNA-seq analysis indicated that the therapeutic mechanism involved the PI3K/AKT signaling pathway. Osteoking increased the expression of RUNX2 and decreased the expression of PPAR-γ, a marker of lipogenesis, in OVX rats. Extraction of BMSCs for subsequent studies revealed a significant reduction in proliferation and osteogenic differentiation, along with an increase in lipogenic differentiation, in the OVX group. Osteoking treatment inhibited the expression of PPAR-γ and increased the expression of RUNX2 in BMSCs. Additionally, Osteoking reversed the LY294002-mediated inhibition of PI3K/AKT/mTOR signaling pathway activation, increased the expression of the apoptosis-protecting protein Bcl2, and decreased the expression of apoptosis-associated proteins Caspase3 and Bax.
Osteoking markedly improved bone microstructure, biomechanics, and bone density in OVX rats. Osteoking-containing serum reversed the imbalance in lineage differentiation in OVX rats, characterized by reduced osteogenic differentiation and increased lipid differentiation of BMSCs. Furthermore, Osteoking-containing serum significantly increased BMSC proliferation and prevented apoptosis in OVX rats through the PI3K/AKT signaling pathway.
Huang G
,Yin W
,Zhao X
,Xu M
,Wang P
,Li R
,Zhou L
,Tang W
,Jiao J
... -
《-》