-
Enhanced labor pain monitoring using machine learning and ECG waveform analysis for uterine contraction-induced pain.
This study aims to develop an innovative approach for monitoring and assessing labor pain through ECG waveform analysis, utilizing machine learning techniques to monitor pain resulting from uterine contractions.
The study was conducted at National Taiwan University Hospital between January and July 2020. We collected a dataset of 6010 ECG samples from women preparing for natural spontaneous delivery (NSD). The ECG data was used to develop an ECG waveform-based Nociception Monitoring Index (NoM). The dataset was divided into training (80%) and validation (20%) sets. Multiple machine learning models, including LightGBM, XGBoost, SnapLogisticRegression, and SnapDecisionTree, were developed and evaluated. Hyperparameter optimization was performed using grid search and five-fold cross-validation to enhance model performance.
The LightGBM model demonstrated superior performance with an AUC of 0.96 and an accuracy of 90%, making it the optimal model for monitoring labor pain based on ECG data. Other models, such as XGBoost and SnapLogisticRegression, also showed strong performance, with AUC values ranging from 0.88 to 0.95.
This study demonstrates that the integration of machine learning algorithms with ECG data significantly enhances the accuracy and reliability of labor pain monitoring. Specifically, the LightGBM model exhibits exceptional precision and robustness in continuous pain monitoring during labor, with potential applicability extending to broader healthcare settings.
ClinicalTrials.gov Identifier: NCT04461704.
Chu YC
,Chen SS
,Chen KB
,Sun JS
,Shen TK
,Chen LK
... -
《BioData Mining》
-
Machine learning-based prediction of postpartum hemorrhage after vaginal delivery: combining bleeding high risk factors and uterine contraction curve.
This work used a machine learning model to improve the accuracy of predicting postpartum hemorrhage in vaginal delivery.
Among the 25,098 deliveries in the obstetrics department of the First Hospital of Jinan University recorded from 2016 to 2020, 10,520 were vaginal deliveries with complete study data. Further review selected 850 cases of postpartum hemorrhage (amount of bleeding > 500 mL) and 54 cases of severe postpartum hemorrhage (amount of bleeding > 1000 mL). Indicators of clinical risk factors for postpartum hemorrhage were retrieved from electronic medical records. Features of the uterine contraction curve were extracted 2 h prior to vaginal delivery and modeled using a 49-variable machine learning with 90% of study cases used in the training set and 10% of study cases used in the test set. Accuracy was compared among the assessment table, classical statistical models, and machine learning models used to predict postpartum hemorrhage to assess their clinical use. The assessment table contained 16 high-risk factor scores to predict postpartum hemorrhage. The classical statistical model used was Logistic Regression (LR). The machine learning models were Random Forest (RF), K Nearest Neighbor (KNN), and the one integrated with Lightgbm (LGB) and LR. The effect of model prediction was evaluated by area under the receiver operating characteristic curve (AUC), namely, C-static, calibration curve Brier score, decision curve, F-measure, sensitivity (SE), and specificity (SP).
1: Among the tested tools, the machine learning model LGB + LR has the best performance in predicting postpartum hemorrhage. Its Brier, AUC, and F-measure scores are better than those of other models in each group, and its SE and SP reach 0.694 and 0.800, respectively. The predictive performance of the classical statistical model LR is AUC: 0.729, 95%CI [0.702-0.756]). 2: Verification on the testing set reveals that the features of uterine contraction contribute to the improved accuracy of the model prediction. 3: LGB + LR model suggested that among the 49 indicators for predicting severe postpartum hemorrhage, the importance of the first 10 characteristics in descending order is as follows: hematocrit (%), shock index, frequency of contractions (min-1), white blood cell count, gestational hypertension, neonatal weight (kg), time of second labor (min), mean area of contractions (mmHg s), total amniotic fluid (mL), and body mass index (BMI). The prediction effect is close to that of the model after training with all 49 features. The predictive effect was close to that of the model after training using all 49 features. 4: Contraction frequency and intensity Mean_Area (representing effective contractions) have a high predictive value for severe postpartum hemorrhage. 5: Blood loss amount within 2 h has a high warning effect on postpartum hemorrhage, and the increase in AUC to 0.95 indicates that postpartum bleeding mostly occurs within 2 h after delivery.
Machine learning models incorporated with uterine contraction features can further improve the accuracy of postpartum hemorrhage prediction in vaginal delivery and provide a reference for clinicians to intervene early and reduce adverse pregnancy outcomes.
Liu J
,Wang C
,Yan R
,Lu Y
,Bai J
,Wang H
,Li R
... -
《-》
-
Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage.
Spontaneous intracerebral hemorrhage (sICH) is associated with significant mortality and morbidity. Predicting the prognosis of patients with sICH remains an important issue, which significantly affects treatment decisions. Utilizing readily available clinical parameters to anticipate the unfavorable prognosis of sICH patients holds notable clinical significance. This study employs five machine learning algorithms to establish a practical platform for the prediction of short-term prognostic outcomes in individuals afflicted with sICH.
Within the framework of this retrospective analysis, the model underwent training utilizing data gleaned from 413 cases from the training center, with subsequent validation employing data from external validation center. Comprehensive clinical information, laboratory analysis results, and imaging features pertaining to sICH patients were harnessed as training features for machine learning. We developed and validated the model efficacy using all the selected features of the patients using five models: Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), XGboost and LightGBM, respectively. The process of Recursive Feature Elimination (RFE) was executed for optimal feature screening. An internal five-fold cross-validation was employed to pinpoint the most suitable hyperparameters for the model, while an external five-fold cross-validation was implemented to discern the machine learning model demonstrating the superior average performance. Finally, the machine learning model with the best average performance is selected as our final model while using it for external validation. Evaluation of the machine learning model's performance was comprehensively conducted through the utilization of the ROC curve, accuracy, and other relevant indicators. The SHAP diagram was utilized to elucidate the variable importance within the model, culminating in the amalgamation of the above metrics to discern the most succinct features and establish a practical prognostic prediction platform.
A total of 413 patients with sICH patients were collected in the training center, of which 180 were patients with poor prognosis. A total of 74 patients with sICH were collected in the external validation center, of which 26 were patients with poor prognosis. Within the training set, the test set AUC values for SVM, LR, RF, XGBoost, and LightGBM models were recorded as 0.87, 0.896, 0.916, 0.885, and 0.912, respectively. The best average performance of the machine learning models in the training set was the RF model (average AUC: 0.906 ± 0.029, P < 0.01). The model still maintains a good performance in the external validation center, with an AUC of 0.817 (95% CI 0.705-0.928). Pertaining to feature importance for short-term prognostic attributes of sICH patients, the NIHSS score reigned supreme, succeeded by AST, Age, white blood cell, and hematoma volume, among others. In culmination, guided by the RF model's variable importance weight and the model's ROC curve insights, the NIHSS score, AST, Age, white blood cell, and hematoma volume were integrated to forge a short-term prognostic prediction platform tailored for sICH patients.
We constructed a prediction model based on the results of the RF model incorporating five clinically accessible predictors with reliable predictive efficacy for the short-term prognosis of sICH patients. Meanwhile, the performance of the external validation set was also more stable, which can be used for accurate prediction of short-term prognosis of sICH patients.
Geng Z
,Yang C
,Zhao Z
,Yan Y
,Guo T
,Liu C
,Wu A
,Wu X
,Wei L
,Tian Y
,Hu P
,Wang K
... -
《Journal of Translational Medicine》
-
Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning.
To develop and validate a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning methods.
A retrospective cohort study was conducted to select 303 elderly patients with severe coronary calcification as the study subjects. According to the occurrence of postoperative heart failure, the study subjects were divided into the heart failure group (n = 53) and the non-heart failure group (n = 250). Retrospective collection of clinical data from the study subjects during hospitalization. After processing the missing values in the original data and addressing sample imbalance using Adaptive Synthetic Sampling (ADASYN) method, the final dataset consists of 502 samples: 250 negative samples (i.e., patients not suffering from heart failure) and 252 positive samples (i.e., patients with heart failure). According to a 7:3 ratio, the datasets of 502 patients were randomly divided into a training set (n = 351) and a validation set (n = 151). On the training set, logistic regression (LR), extreme gradient boosting (XGBoost), support vector machine (SVM), and lightweight gradient boosting machine (LightGBM) algorithms were used to construct heart failure risk prediction models; Evaluate model performance on the validation set by calculating the area under the receiver operating characteristic curve (ROC) curve (AUC), sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and prediction accuracy.
A total of 17.49% of 303 patients occured postoperative heart failure. The AUC of LR, XGBoost, SVM, and LightGBM models in the training set were 0.872, 1.000, 0.699, and 1.000, respectively. After 10 fold cross validation, the AUC was 0.863, 0.972, 0.696, and 0.963 in the training set, respectively. Among them, XGBoost had the highest AUC and better predictive performance, while SVM models had the worst performance. The XGBoost model also showed good predictive performance in the validation set (AUC = 0.972, 95% CI [0.951-0.994]). The Shapley additive explanation (SHAP) method suggested that the six characteristic variables of blood cholesterol, serum creatinine, fasting blood glucose, age, triglyceride and NT-proBNP were important positive factors for the occurrence of heart failure, and LVEF was important negative factors for the occurrence of heart failure.
The seven characteristic variables of blood cholesterol, blood creatinine, fasting blood glucose, NT-proBNP, age, triglyceride and LVEF are all important factors affecting the occurrence of heart failure. The prediction model of heart failure risk for elderly patients after CRA based on the XGBoost algorithm is superior to SVM, LightGBM and the traditional LR model. This model could be used to assist clinical decision-making and improve the adverse outcomes of patients after CRA.
Zhang L
,Zhou X
,Cao J
《PeerJ》
-
Fetal electrocardiogram (ECG) for fetal monitoring during labour.
Neilson JP
《Cochrane Database of Systematic Reviews》