Modified radioimmunoassay versus ELISA to quantify anti-acetylcholine receptor antibodies in a mouse model of myasthenia gravis.

来自 PUBMED

摘要:

In mouse models of myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies can be quantified to monitor disease progression and treatment response. In mice, enzyme-linked immunosorbent assay (ELISA) is the gold standard to quantify these antibodies. However, this method requires antigen purification, which is both time-consuming and expensive. In humans, radioimmunoassay (RIA)-which is more sensitive than ELISA-is commonly used to quantify AChR antibodies. At present, however, no commercial RIA kits are available to quantify these antibodies in mice. The aim of this study was to compare a modified commercial human RIA kit to two ELISA methods to detect AChR antibodies in an experimental autoimmune mouse model of MG (EAMG). C57BL/6 J mice were immunized with purified AChR from Tetronarce californica (T-AChR). Serum samples were analyzed by RIA and two ELISAs (T-AChR and purified mouse AChR peptide [m-AChR]). The modified RIA showed excellent sensitivity (84.1 %) and specificity (100 %) for the detection of AChR antibodies. RIA showed a good agreement with T-AChR ELISA (κ = 0.69) but only moderate agreement with m-AChR ELISA (κ = 0.49). These results demonstrate the feasibility of modifying a commercially-available RIA kit to quantify AChR antibodies in EAMG. The advantage of this technique is that it eliminates the need to develop the entire methodology in-house and reduces inter and intra-laboratory variability.

收起

展开

DOI:

10.1016/j.jim.2024.113748

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读