Diagnosis of bacteria from the CMNR group in farm animals.

来自 PUBMED

作者:

Carvalho CSde Aquino VMSMeyer RSeyffert NCastro TLP

展开

摘要:

The CMNR group comprises bacteria of the genera Corynebacterium, Mycobacterium, Nocardia, and Rhodococcus and share cell wall and DNA content characteristics. Many pathogenic CMNR bacteria cause diseases such as mastitis, lymphadenitis, and pneumonia in farmed animals, which cause economic losses for breeders and represent a threat to public health. Traditional diagnosis in CMNR involves isolating target bacteria on general or selective media and conducting metabolic analyses with the assistance of laboratory biochemical identification systems. Advanced mass spectrometry may also support diagnosing these bacteria in the clinic's daily routine despite some challenges, such as the need for isolated bacteria. In difficult identification among some CMNR members, molecular methods using polymerase chain reaction (PCR) emerge as reliable options for correct specification that is sometimes achieved directly from clinical samples such as tracheobronchial aspirates and feces. On the other hand, immunological diagnostics such as the skin test or Enzyme-Linked Immunosorbent Assay (ELISA) for Mycobacterium tuberculosis yield promising results in subclinical infections with no bacterial growth involved. In this review, we present the methods most commonly used to diagnose pathogenic CMNR bacteria and discuss their advantages and limitations, as well as challenges and perspectives on adopting new technologies in diagnostics.

收起

展开

DOI:

10.1016/j.cimid.2024.102230

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读