MVST: Identifying spatial domains of spatial transcriptomes from multiple views using multi-view graph convolutional networks.
Spatial transcriptome technology can parse transcriptomic data at the spatial level to detect high-throughput gene expression and preserve information regarding the spatial structure of tissues. Identifying spatial domains, that is identifying regions with similarities in gene expression and histology, is the most basic and critical aspect of spatial transcriptome data analysis. Most current methods identify spatial domains only through a single view, which may obscure certain important information and thus fail to make full use of the information embedded in spatial transcriptome data. Therefore, we propose an unsupervised clustering framework based on multiview graph convolutional networks (MVST) to achieve accurate spatial domain recognition by the learning graph embedding features of neighborhood graphs constructed from gene expression information, spatial location information, and histopathological image information through multiview graph convolutional networks. By exploring spatial transcriptomes from multiple views, MVST enables data from all parts of the spatial transcriptome to be comprehensively and fully utilized to obtain more accurate spatial expression patterns. We verified the effectiveness of MVST on real spatial transcriptome datasets, the robustness of MVST on some simulated datasets, and the reasonableness of the framework structure of MVST in ablation experiments, and from the experimental results, it is clear that MVST can achieve a more accurate spatial domain identification compared with the current more advanced methods. In conclusion, MVST is a powerful tool for spatial transcriptome research with improved spatial domain recognition.
Duan H
,Zhang Q
,Cui F
,Zou Q
,Zhang Z
... -
《-》
Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
Recent advances in spatially resolved transcriptomics (ST) technologies enable the measurement of gene expression profiles while preserving cellular spatial context. Linking gene expression of cells with their spatial distribution is essential for better understanding of tissue microenvironment and biological progress. However, effectively combining gene expression data with spatial information to identify spatial domains remains challenging.
To deal with the above issue, in this paper, we propose a novel unsupervised learning framework named STMGCN for identifying spatial domains using multi-view graph convolution networks (MGCNs). Specifically, to fully exploit spatial information, we first construct multiple neighbor graphs (views) with different similarity measures based on the spatial coordinates. Then, STMGCN learns multiple view-specific embeddings by combining gene expressions with each neighbor graph through graph convolution networks. Finally, to capture the importance of different graphs, we further introduce an attention mechanism to adaptively fuse view-specific embeddings and thus derive the final spot embedding. STMGCN allows for the effective utilization of spatial context to enhance the expressive power of the latent embeddings with multiple graph convolutions. We apply STMGCN on two simulation datasets and five real spatial transcriptomics datasets with different resolutions across distinct platforms. The experimental results demonstrate that STMGCN obtains competitive results in spatial domain identification compared with five state-of-the-art methods, including spatial and non-spatial alternatives. Besides, STMGCN can detect spatially variable genes with enriched expression patterns in the identified domains. Overall, STMGCN is a powerful and efficient computational framework for identifying spatial domains in spatial transcriptomics data.
Shi X
,Zhu J
,Long Y
,Liang C
... -
《-》
STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.
We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.
We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.
We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
Peng L
,He X
,Peng X
,Li Z
,Zhang L
... -
《-》
SpaNCMG: improving spatial domains identification of spatial transcriptomics using neighborhood-complementary mixed-view graph convolutional network.
The advancement of spatial transcriptomics (ST) technology contributes to a more profound comprehension of the spatial properties of gene expression within tissues. However, due to challenges of high dimensionality, pronounced noise and dynamic limitations in ST data, the integration of gene expression and spatial information to accurately identify spatial domains remains challenging. This paper proposes a SpaNCMG algorithm for the purpose of achieving precise spatial domain description and localization based on a neighborhood-complementary mixed-view graph convolutional network. The algorithm enables better adaptation to ST data at different resolutions by integrating the local information from KNN and the global structure from r-radius into a complementary neighborhood graph. It also introduces an attention mechanism to achieve adaptive fusion of different reconstructed expressions, and utilizes KPCA method for dimensionality reduction. The application of SpaNCMG on five datasets from four sequencing platforms demonstrates superior performance to eight existing advanced methods. Specifically, the algorithm achieved highest ARI accuracies of 0.63 and 0.52 on the datasets of the human dorsolateral prefrontal cortex and mouse somatosensory cortex, respectively. It accurately identified the spatial locations of marker genes in the mouse olfactory bulb tissue and inferred the biological functions of different regions. When handling larger datasets such as mouse embryos, the SpaNCMG not only identified the main tissue structures but also explored unlabeled domains. Overall, the good generalization ability and scalability of SpaNCMG make it an outstanding tool for understanding tissue structure and disease mechanisms. Our codes are available at https://github.com/ZhihaoSi/SpaNCMG.
Si Z
,Li H
,Shang W
,Zhao Y
,Kong L
,Long C
,Zuo Y
,Feng Z
... -
《-》
scMGATGRN: a multiview graph attention network-based method for inferring gene regulatory networks from single-cell transcriptomic data.
The gene regulatory network (GRN) plays a vital role in understanding the structure and dynamics of cellular systems, revealing complex regulatory relationships, and exploring disease mechanisms. Recently, deep learning (DL)-based methods have been proposed to infer GRNs from single-cell transcriptomic data and achieved impressive performance. However, these methods do not fully utilize graph topological information and high-order neighbor information from multiple receptive fields. To overcome those limitations, we propose a novel model based on multiview graph attention network, namely, scMGATGRN, to infer GRNs. scMGATGRN mainly consists of GAT, multiview, and view-level attention mechanism. GAT can extract essential features of the gene regulatory network. The multiview model can simultaneously utilize local feature information and high-order neighbor feature information of nodes in the gene regulatory network. The view-level attention mechanism dynamically adjusts the relative importance of node embedding representations and efficiently aggregates node embedding representations from two views. To verify the effectiveness of scMGATGRN, we compared its performance with 10 methods (five shallow learning algorithms and five state-of-the-art DL-based methods) on seven benchmark single-cell RNA sequencing (scRNA-seq) datasets from five cell lines (two in human and three in mouse) with four different kinds of ground-truth networks. The experimental results not only show that scMGATGRN outperforms competing methods but also demonstrate the potential of this model in inferring GRNs. The code and data of scMGATGRN are made freely available on GitHub (https://github.com/nathanyl/scMGATGRN).
Yuan L
,Zhao L
,Jiang Y
,Shen Z
,Zhang Q
,Zhang M
,Zheng CH
,Huang DS
... -
《-》