Genome-wide identification of the phenylalanine ammonia-lyase gene from Epimedium Pubescens Maxim. (Berberidaceae): novel insight into the evolution of the PAL gene family.

来自 PUBMED

作者:

Xu CFan XShen GGuo B

展开

摘要:

Phenylalanine ammonia-lyase (PAL) serves as a key gateway enzyme, bridging primary metabolism and the phenylpropanoid pathway, and thus playing an indispensable role in flavonoid, anthocyanin and lignin biosynthesis. PAL gene families have been extensively studied across species using public genomes. However, a comprehensive exploration of PAL genes in Epimedium species, especially those involved in prenylated flavonol glycoside, anthocyanin, or lignin biosynthesis, is still lacking. Moreover, an in-depth investigation into PAL gene family evolution is warranted. Seven PAL genes (EpPAL1-EpPAL7) were identified. EpPAL2 and EpPAL3 exhibit low sequence identity to other EpPALs (ranging from 61.09 to 64.38%) and contain two unique introns, indicating distinct evolutionary origins. They evolve at a rate ~ 10 to ~ 54 times slower compared to EpPAL1 and EpPAL4-7, suggesting strong purifying selection. EpPAL1 evolved independently and is another ancestral gene. EpPAL1 formed EpPAL4 through segmental duplication, which lead to EpPAL5 and EpPAL6 through tandem duplications, and EpPAL7 through transposed duplication, shaping modern EpPALs. Correlation analysis suggests EpPAL1, EpPAL2 and EpPAL3 play important roles in prenylated flavonol glycosides biosynthesis, with EpPAL2 and EpPAL3 strongly correlated with both Epimedin C and total prenylated flavonol glycosides. EpPAL1, EpPAL2 and EpPAL3 may play a role in anthocyanin biosynthesis in leaves. EpPAL2, EpPAL3, EpPAL6, and EpPAL7 might be engaged in anthocyanin production in petals, and EpPAL2 and EpPAL3 might also contribute to anthocyanin synthesis in sepals. Further experiments are needed to confirm these hypotheses. Novel insights into the evolution of PAL gene family suggest that it might have evolved from a monophyletic group in bryophytes to large-scale sequence differentiation in gymnosperms, basal angiosperms, and Magnoliidae. Ancestral gene duplications and vertical inheritance from gymnosperms to angiosperms likely occurred during PAL evolution. Most early-diverging eudicotyledons and monocotyledons have distinct histories, while modern angiosperm PAL gene families share similar patterns and lack distant gene types. EpPAL2 and EpPAL3 may play crucial roles in biosynthesis of prenylated flavonol glycosides and anthocyanins in leaves and flowers. This study provides novel insights into PAL gene family evolution. The findings on PAL genes in E. pubescens will aid in synthetic biology research on prenylated flavonol glycosides production.

收起

展开

DOI:

10.1186/s12870-024-05480-z

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(107)

参考文献(50)

引证文献(0)

来源期刊

BMC PLANT BIOLOGY

影响因子:5.255

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读