Deciphering cell-specific genetic insights: Unraveling the immunogenetic landscape of systemic lupus erythematosus.
Functional genes within genomic loci associated with systemic lupus erythematosus (SLE), as identified by genome-wide association studies, exhibit cell-specific characteristics. This study delves into the impact of genetic variants within SLE loci on gene expression in different types of immune cells, unraveling the complex interplay between genetics and immunopathogenesis. Through the integration of genetic association and single-cell transcriptomic sequencing data, we identified potential cell-specific susceptibility genes for SLE across diverse immune cell subsets. The single-cell eQTL analysis revealed 30,409 associations involving 3583 SLE-associated SNPs. These SNPs exhibited associations with expression levels of 147 genes across 14 distinct cell types. The single-cell summary data-based Mendelian randomization (SMR) analysis identified 119 significant associations between the expression levels of 44 genes and SLE. Notably, myeloid cells exhibited associations solely within the MHC region, while T, B, and natural killer cells showed associations with both MHC and non-MHC genes in relation to SLE. Analysis of single-cell transcriptomic data from 33 children SLE cases and 11 match controls (227,303 cells), as well as 7 adult SLE cases and 5 match controls (78,414 cells) highlights differential expression of key genes. Notably, genetic variants within HLA-DRB1, HLA-DRB5, HLA-DQA1, HLA-DQB1, IRF7, IRF5, BLK and HLA-DPA1 play a pivotal role in mediating immune dysregulation in specific immune cell types. Our study contributes to a comprehensive understanding of the intricate relationships between genetics, gene expression and SLE susceptibility. The findings shed light on the cell-specific impacts of genetic variants within SLE-associated genomic loci.
Zhang H
,Zhang Z
,Fan K
,Chen Y
,Xu P
,Guo Y
,Mo X
... -
《-》
Genome-wide identification of RNA modification-related single nucleotide polymorphisms associated with rheumatoid arthritis.
RNA modification plays important roles in many biological processes, such as gene expression control. The aim of this study was to identify single nucleotide polymorphisms related to RNA modification (RNAm-SNPs) for rheumatoid arthritis (RA) as putative functional variants.
We examined the association of RNAm-SNPs with RA in summary data from a genome-wide association study of 19,234 RA cases and 61,565 controls. We performed eQTL and pQTL analyses for the RNAm-SNPs to find associated gene expression and protein levels. Furthermore, we examined the associations of gene expression and circulating protein levels with RA using two-sample Mendelian randomization analysis methods.
A total of 160 RNAm-SNPs related to m6A, m1A, A-to-I, m7G, m5C, m5U and m6Am modifications were identified to be significantly associated with RA. These RNAm-SNPs were located in 62 protein-coding genes, which were significantly enriched in immune-related pathways. RNAm-SNPs in important RA susceptibility genes, such as PADI2, SPRED2, PLCL2, HLA-A, HLA-B, HLA-DRB1, HLA-DPB1, TRAF1 and TXNDC11, were identified. Most of these RNAm-SNPs showed eQTL effects, and the expression levels of 26 of the modifiable genes (e.g., PADI2, TRAF1, HLA-A, HLA-DRB1, HLA-DPB1 and HLA-B) in blood cells were associated with RA. Circulating protein levels, such as CFB, GZMA, HLA-DQA2, IL21, LRPAP1 and TFF3, were affected by RNAm-SNPs and were associated with RA.
The present study identified RNAm-SNPs in the reported RA susceptibility genes and suggested that RNAm-SNPs may affect RA risk by affecting the expression levels of corresponding genes and proteins.
Wang M
,Wu J
,Lei S
,Mo X
... -
《BMC GENOMICS》
Decoding the genetic landscape of juvenile dermatomyositis: insights from phosphorylation-associated single nucleotide polymorphisms.
Genome-wide association studies (GWASs) have identified genetic susceptibility loci associated with juvenile dermatomyositis (JDM). Single nucleotide polymorphisms related to phosphorylation (phosSNPs) are critical nonsynonymous mutations exerting substantial influence on gene expression regulation. The aim of this study was to identify JDM susceptibility genes in the GWAS loci by the use of phosSNPs. We explored quantitative trait loci (QTLs) among the phosSNPs associated with JDM using data from eQTL (bulk tissues and single-cell) and pQTL studies. For gene expression and protein levels significantly influenced by JDM-associated phosSNPs, we assessed their associations with JDM through MR analyses. Additionally, we conducted differential expression gene analyses, incorporating single-cell transcriptomic profiling of 6 JDM cases and 11 juvenile controls (99,396 cells). We identified 31 phosSNPs situated in the 6p21 locus that were associated with JDM. Half of these phosSNPs showed effects on gene expression in various cells and circulating protein levels. In MR analyses, we established associations between the expression levels of pivotal JDM-associated genes, including MICB, C4A, HLA-DRB1, HLA-DRB5, and PSMB9, in skin, muscle, or blood cells and circulating levels of C4A, with JDM. Utilizing single-cell eQTL data, we identified a total of 276 association signals across 14 distinct immune cell types for 28 phosSNPs. Further insights were gained through single-cell differential expression analysis, revealing differential expression of PSMB9, HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1 in immune cells. The present study pinpointed phosSNPs within susceptibility genes for JDM and unraveled the intricate relationships among these SNPs, gene expression levels, and JDM.
Zhang H
,Zhang Z
,Fan K
,Chen H
,Guo Y
,Mo X
... -
《-》