-
Elucidating hydroxysafflor yellow A's multi-target mechanisms against alcoholic liver disease through integrative pharmacology.
Alcoholic liver disease (ALD) significantly contributes to global liver-related morbidity and mortality. Natural products play a crucial role in the prevention and treatment of ALD. Hydroxysafflor yellow A (HSYA), a unique and primary component of Safflower (Carthamus tinctorius l.), exhibits diverse pharmacological activities. However, the impact and mechanism of HSYA on ALD have not been fully elucidated.
The purpose of this study was to employ an integrative pharmacology approach to assess the multi-targeted mechanism of HSYA against ALD.
Network pharmacology and molecular docking techniques were used to analyze the potential therapeutic signaling pathways and targets of HSYA against ALD. An ALD model in zebrafish larvae was established. Larvae were pretreated with HSYA and then exposed to ethanol. Liver injury was measured by fluorescence expression analysis in the liver-specific transgenic zebrafish line Tg (fabp10a:DsRed) and liver tissue H&E staining. Liver steatosis was determined by whole-mount oil red O staining and TG level. Additionally, an ethanol-induced hepatocyte injury model was established in vitro to observe hepatocyte damage (cell viability, ALT level), lipid accumulation (oil red O staining, TC and TG), and oxidative stress (ROS, MDA, GPx and SOD) in HepG2 cells treated with or without HSYA. Finally, qRT-PCR combined with network pharmacology and molecular docking was employed to validate the effects of HSYA on targets.
HSYA exhibited a significant, dose-dependent improvement in ethanol-induced liver injury in zebrafish larvae and HepG2 cells. Network pharmacology analysis revealed that HSYA may exert pharmacological effects against ALD through 341 potential targets. These targets are involved in various signaling pathways, including lipid metabolism and atherosclerosis, PI3K-Akt signaling pathway, MAPK signaling pathway, and ALD itself. Molecular docking studies displayed that HSYA had a strong binding affinity toward the domains of IL1B, IL6, TNF, PPARA, PPARG, HMGCR and ADH5. qRT-PCR assays demonstrated that HSYA effectively reversed the ethanol-induced aberrant gene expression of SREBF1, FASN, ACACA, CPT1A, PPARA, IL1B, IL6, TNFα, ADH5, and ALDH2 in vivo and in vitro.
This study offers a comprehensive investigation into the anti-ALD mechanisms of HSYA using an integrative pharmacology approach. The potential targets of HSYA may be implicated in enhancing ethanol catabolism, reducing lipid accumulation, mitigating oxidative stress, and inhibiting inflammatory response.
Yu HC
,Bai QR
,Guo JJ
,Chen MY
,Wang L
,Tong FC
,Zhang SL
,Wu J
... -
《-》
-
Hydroxysafflor yellow A ameliorates alcohol-induced liver injury through PI3K/Akt and STAT3/NF-κB signaling pathways.
Alcohol-associated liver disease (ALD) is a prevalent liver ailment. It has escalated into a significant public health issue, imposing substantial burdens on medical, economic, and social domains. Currently, oxidative stress, inflammation, and apoptosis are recognized as crucial culprits in improving ALD. Consequently, mitigating these issues has emerged as a promising avenue for enhancing ALD. Hydroxysafflor yellow A (HSYA) is the main ingredient in safflower, showing excellent antioxidative stress, anti-inflammatory, and anti-apoptosis traits. However, there are limited investigations into the mechanisms by which HSYA ameliorates ALD PURPOSE: We investigated whether HSYA, a significant constituent of Asteraceae safflower, exerts antioxidant stress and attenuates inflammation and anti-apoptotic effects through PI3K/Akt and STAT3/NF-κB pathways, thereby ameliorating ALD METHODS: We established two experimental models: an ethanol-induced liver damage mouse model in vivo and a HepG2 cell alcohol injury model in vitro RESULTS: The results demonstrated that HSYA effectively ameliorated liver tissue damage, reduced levels of ALT, AST, LDL-C, TG, TC, and MDA, enhanced HDL-C levels, SOD and GSH activities, reduced ROS accumulation in cells, and activated the Nrf2 pathway, a transcription factor involved in antioxidant defense. By regulating the PI3K/Akt and STAT3/NF-κB pathways, HSYA exhibits notable antioxidative stress, anti-inflammatory, and anti-apoptotic effects, effectively impeding ALD's advancement. To further confirm the regulatory effect of HSYA on PI3K/Akt and downstream signaling pathways, the PI3K activator 740 Y-P was used and was found to reverse the downregulation of PI3K by HSYA CONCLUSION: This study supports the effectiveness of HSYA in reducing ALD by regulating the PI3K/Akt and STAT3/NF-κB pathways, indicating its potential medicinal value.
Wang W
,Liu M
,Fu X
,Qi M
,Zhu F
,Fan F
,Wang Y
,Zhang K
,Chu S
... -
《-》
-
Hydroxysafflor yellows alleviate thrombosis and acetaminophen-induced toxicity in vivo by enhancing blood circulation and poison excretion.
Hydroxysafflor yellow A (HSYA) from the flower of Carthamus tinctorius (Safflower) has been reported to have various pharmacological effects. However, little is known about the bioactivities of other chemical constituents in Safflower and the relationship between enhancement of blood circulation and hepatoprotection by HSYA.
The present research was to evaluate the antithrombotic and hepatoprotective activities of HSYA and C, examine their mechanisms of actions, including influence on the excretion velocity of acetaminophen, and the relationship between the antithrombotic, hepatoprotective, and other bioactivities.
The hepatoprotective activities were examined by acetaminophen (APAP)-induced zebrafish toxicity and carbon tetrachloride (CCl4)-induced mouse liver injury. The concentrations of APAP in zebrafish and APAP that was excreted to the culture media were quantified by UHPLC-MS. The anti-thrombosis effect of HSYA and C were examined by the phenylhydrazine (PHZ)-induced zebrafish thrombosis.
HSYA and HSYC showed robust protection on APAP-induced toxicity and PHZ-induced thrombosis. The hepatoprotective effects of HSYA and C were more potent than that of the positive control, acetylcysteine (61.7% and 58.0%, respectively, vs. 56.9% at 100 µM) and their antithrombosis effects were more robust than aspirin (95.1% and 86.2% vs. 52.7% at 100 µM). HSYA and C enhanced blood circulation, rescued APAP-treated zebrafish from morphological abnormalities, and mitigated APAP-induced toxicity in liver development in liver-specific RFP-expressing transgenic zebrafish. HSYC attenuated CCl4-induced mouse liver injury and regulated the levels of HIF-1α, iNOS, TNF-α, α-SMA, and NFκB in liver tissues. HSYA was also protective in a dual thrombotic and liver toxicity zebrafish model. By UHPLC-MS, HSYA accelerated the excretion of APAP.
HSYA and C are the bioactive constituents of Safflower that are responsible for the herbal drug's traditional use in promoting blood circulation to remove blood stasis. Safflower and its chalcone constituents may protect from damage due to exogenous or disease-induced endogenous toxins by enhancing the excretion velocity of toxins.
Wang LW
,Cui XY
,He JF
,Duan S
,Liu CR
,Shan CB
,Wang Y
,Ma CM
... -
《-》
-
Hydroxysafflor yellow A exerts anti-fibrotic and anti-angiogenic effects through miR-29a-3p/PDGFRB axis in liver fibrosis.
Liver fibrosis is a prevalent pathological process in chronic liver diseases characterized by excessive extracellular matrix (ECM) deposition and abnormal angiogenesis. Notably, hepatic stellate cells (HSCs) are the primary source of ECM. Activated HSCs not only secrete numerous pro-fibrotic cytokines but also are endowed with a pro-angiogenic phenotype to promote pathological angiogenesis. Therefore, targeted modulation of HSCs has emerged as a pivotal strategy for addressing liver fibrosis. Hydroxysafflor yellow A (HSYA) is a homology of medicine and food colourant with good pharmacological activity. However, the precise mechanisms of HSYA against liver fibrosis remain unclear.
The objective of this study was to elucidate the impact of HSYA on liver fibrosis and pathological angiogenesis, as well as the underlying mechanisms in vitro and in vivo studies.
The efficacy and mechanisms of HSYA on TGF-β1-induced HSCs and VEGFA-induced endothelial cells were investigated by MTT assay, EdU cell proliferation assay, cell scratch assay, Elisa assay, immunofluorescence assay, molecular docking, cell transfection assay, western blot analysis and RT-qPCR analysis. In CCl4-induced liver fibrosis mice model, H&E, Masson, and Sirius red staining were used to observe histopathology. Serum transaminase activity and liver biochemical indexes were tested by biochemical kit. Immunohistochemical, fluorescence in situ hybridization (FISH), western blot analysis and RT-qPCR analysis were implemented to determine the mechanism of HSYA in vivo.
Herein, our findings confirmed that HSYA inhibited the proliferation, migration and activation of HSCs, as evidenced by a reduction in cell viability, relative migration rate, EdU staining intensity, and pro-fibrotic mRNAs and proteins expression in vitro. Mechanistically, HSYA played an anti-fibrotic and anti-angiogenic role by partially silencing PDGFRB in activated HSCs, thereby disrupting PDGFRB/MEK/ERK signal transduction and inhibiting the expression of HIF-1α, VEGFA and VEGFR2 proteins. Importantly, PDGFRB was a target gene of miR-29a-3p. Treatment with HSYA reversed the down-regulation of miR-29a-3p and antagonized PDGFRB signaling pathway in TGF-β1-induced HSCs transfected with miR-29a-3p inhibitor. Consistent with our in vitro study, HSYA exhibited a good hepatoprotective effect in CCl4-induced liver fibrosis mice by reducing serum ALT and AST levels, decreasing the contents of four fibrosis indicators (HA, PIIIP, ColIV and LN) and hydroxyproline, and inhibiting the TGF-β1/TGFBR signaling pathway. In terms of mechanisms, HSYA alleviated pathological angiogenesis in fibrotic liver by deactivating PDGFRB signaling pathway and impairing the positive expression of CD31. Subsequently, FISH results further corroborated HSYA affected the activation of HSCs and angiogenesis achieved by the concurrent upregulation of miR-29a-3p and downregulation of α-SMA and VEGFA. Additionally, treatment with HSYA also forged a link between HSCs and endothelial cells, as supported by inhibiting the aberrant proliferation of endothelial cells.
Fundamentally, the current study has illustrated that HSYA ameliorates liver fibrosis by repressing HSCs-mediated pro-fibrotic and pro-angiogenic processes, which is contingent upon the regulatory effect of HSYA on the miR-29a-3p/PDGFRB axis. These findings provide compelling evidence bolstering the potential of HSYA as a therapeutic agent in liver fibrosis.
Xue X
,Li Y
,Zhang S
,Yao Y
,Peng C
,Li Y
... -
《-》
-
Integrating Network Pharmacology and Transcriptomic Strategies to Explore the Pharmacological Mechanism of Hydroxysafflor Yellow A in Delaying Liver Aging.
Kong J
,Sun S
,Min F
,Hu X
,Zhang Y
,Cheng Y
,Li H
,Wang X
,Liu X
... -
《INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES》