Elucidating hydroxysafflor yellow A's multi-target mechanisms against alcoholic liver disease through integrative pharmacology.

来自 PUBMED

作者:

Yu HCBai QRGuo JJChen MYWang LTong FCZhang SLWu J

展开

摘要:

Alcoholic liver disease (ALD) significantly contributes to global liver-related morbidity and mortality. Natural products play a crucial role in the prevention and treatment of ALD. Hydroxysafflor yellow A (HSYA), a unique and primary component of Safflower (Carthamus tinctorius l.), exhibits diverse pharmacological activities. However, the impact and mechanism of HSYA on ALD have not been fully elucidated. The purpose of this study was to employ an integrative pharmacology approach to assess the multi-targeted mechanism of HSYA against ALD. Network pharmacology and molecular docking techniques were used to analyze the potential therapeutic signaling pathways and targets of HSYA against ALD. An ALD model in zebrafish larvae was established. Larvae were pretreated with HSYA and then exposed to ethanol. Liver injury was measured by fluorescence expression analysis in the liver-specific transgenic zebrafish line Tg (fabp10a:DsRed) and liver tissue H&E staining. Liver steatosis was determined by whole-mount oil red O staining and TG level. Additionally, an ethanol-induced hepatocyte injury model was established in vitro to observe hepatocyte damage (cell viability, ALT level), lipid accumulation (oil red O staining, TC and TG), and oxidative stress (ROS, MDA, GPx and SOD) in HepG2 cells treated with or without HSYA. Finally, qRT-PCR combined with network pharmacology and molecular docking was employed to validate the effects of HSYA on targets. HSYA exhibited a significant, dose-dependent improvement in ethanol-induced liver injury in zebrafish larvae and HepG2 cells. Network pharmacology analysis revealed that HSYA may exert pharmacological effects against ALD through 341 potential targets. These targets are involved in various signaling pathways, including lipid metabolism and atherosclerosis, PI3K-Akt signaling pathway, MAPK signaling pathway, and ALD itself. Molecular docking studies displayed that HSYA had a strong binding affinity toward the domains of IL1B, IL6, TNF, PPARA, PPARG, HMGCR and ADH5. qRT-PCR assays demonstrated that HSYA effectively reversed the ethanol-induced aberrant gene expression of SREBF1, FASN, ACACA, CPT1A, PPARA, IL1B, IL6, TNFα, ADH5, and ALDH2 in vivo and in vitro. This study offers a comprehensive investigation into the anti-ALD mechanisms of HSYA using an integrative pharmacology approach. The potential targets of HSYA may be implicated in enhancing ethanol catabolism, reducing lipid accumulation, mitigating oxidative stress, and inhibiting inflammatory response.

收起

展开

DOI:

10.1016/j.phymed.2024.155956

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(121)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读