Grassland degraded patchiness reduces microbial necromass content but increases contribution to soil organic carbon accumulation.

来自 PUBMED

作者:

Ao DWang BWang YChen YAnum RFeng CJi MLiang CAn S

展开

摘要:

Plant and microbially derived carbon (C) are the two major sources of soil organic carbon (SOC), and their ratio impacts SOC composition, accumulation, stability, and turnover. The contributions of and the key factors defining the plant and microbial C in SOC with grassland patches are not well known. Here, we aim to address this issue by analyzing lignin phenols, amino sugars, glomalin-related soil proteins (GRSP), enzyme activities, particulate organic carbon (POC), and mineral-associated organic carbon (MAOC). Shrubby patches showed increased SOC and POC due to higher plant inputs, thereby stimulating plant-derived C (e.g., lignin phenol) accumulation. While degraded and exposed patches exhibited higher microbially derived C due to reduced plant input. After grassland degradation, POC content decreased faster than MAOC, and plant biomarkers (lignin phenols) declined faster than microbial biomarkers (amino sugars). As grassland degradation intensified, microbial necromass C and GRSP (gelling agents) increased their contribution to SOC formation. Grassland degradation stimulated the stabilization of microbially derived C in the form of MAOC. Further analyses revealed that microorganisms have a C and P co-limitation, stimulating the recycling of necromass, resulting in the proportion of microbial necromass C in the SOC remaining essentially stable with grassland degradation. Overall, with the grassland degradation, the relative proportion of the plant component decreases while than of the microbial component increases and existed in the form of MAOC. This is attributed to the physical protection of SOC by GRSP cementation. Therefore, different sources of SOC should be considered in evaluating SOC responses to grassland degradation, which has important implications for predicting dynamics in SOC under climate change and anthropogenic factors.

收起

展开

DOI:

10.1016/j.scitotenv.2024.175717

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(117)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读