Real-World Treatment Patterns in Patients With Metastatic Castration-Resistant Prostate Cancer in Greece: The PROSPECT Study.
Real-world data on management of metastatic castration resistant prostate cancer (mCRPC) with novel therapies is sparse. The aim of this study was to capture real-world management strategies in patients with mCRPC who initiated first line (1L) systemic therapy with chemotherapy or novel hormonal agents (NHAs) in Greece and describe the therapeutic sequencing strategy among patients who advanced to 2L and 3L treatment.
In this noninterventional, multicentre, retrospective study (PROSPECT), a medical chart review of 149 patients with mCRPC who initiated 1L systemic therapy with chemotherapy or NHAs in 7 major anticancer hospital clinics, from public, academic, and private sectors in Greece was conducted. All endpoints were descriptively analysed. Kaplan-Meier was used for time-to-event outcomes.
At 1L (N = 149), most (78.5%) patients received NHAs; enzalutamide (52.3%), and abiraterone (26.2%). At 2L (N = 68), most (72.1%) patients received chemotherapy, most frequently docetaxel (50.0% of all patients). At 3L (N = 32), 56.3% and 31.3% of patients received chemotherapy and NHAs, respectively. Regarding treatment sequencing from 1L→2L (N = 68), most patients (55.9%) advanced from NHA→chemotherapy. Regarding treatment sequencing from 1L→2L→3L (N = 32), 34.4% advanced from NHAs→chemotherapy→chemotherapy and 31.3% from NHAs→chemotherapy→NHA. Estimated median times spent on treatment at 1L, 2L, and 3L were 9.8, 4.4, and 3.7 months, respectively.
Most patients were treated with 1L NHAs, in accordance to established guidelines (which suggest both NHA and chemo as preferred 1st line options). There appeared to be a longer time on treatment of NHAs at 1L than chemotherapy, suggesting an unmet need for treatment optimisation/recommendations for 2L and 3L treatment in mCRPC.
Liontos M
,Bournakis E
,Bournakis A
,Kostouros E
,Zolota V
,Papatheodoridi AP
,Karalis K
,Kyriazoglou A
,Zakopoulou R
,Vasili E
,Tzovaras A
,Dimitriadis I
,Emmanouil G
,Mauri D
,Christodoulou C
,Tsiatas M
,Zagouri F
,Bamias A
... -
《-》
Medication Prescription Policy for US Veterans With Metastatic Castration-Resistant Prostate Cancer: Causal Machine Learning Approach.
Prostate cancer is the second leading cause of death among American men. If detected and treated at an early stage, prostate cancer is often curable. However, an advanced stage such as metastatic castration-resistant prostate cancer (mCRPC) has a high risk of mortality. Multiple treatment options exist, the most common included docetaxel, abiraterone, and enzalutamide. Docetaxel is a cytotoxic chemotherapy, whereas abiraterone and enzalutamide are androgen receptor pathway inhibitors (ARPI). ARPIs are preferred over docetaxel due to lower toxicity. No study has used machine learning with patients' demographics, test results, and comorbidities to identify heterogeneous treatment rules that might improve the survival duration of patients with mCRPC.
This study aimed to measure patient-level heterogeneity in the association of medication prescribed with overall survival duration (in the form of follow-up days) and arrive at a set of medication prescription rules using patient demographics, test results, and comorbidities.
We excluded patients with mCRPC who were on docetaxel, cabaxitaxel, mitoxantrone, and sipuleucel-T either before or after the prescription of an ARPI. We included only the African American and white populations. In total, 2886 identified veterans treated for mCRPC who were prescribed either abiraterone or enzalutamide as the first line of treatment from 2014 to 2017, with follow-up until 2020, were analyzed. We used causal survival forests for analysis. The unit level of analysis was the patient. The primary outcome of this study was follow-up days indicating survival duration while on the first-line medication. After estimating the treatment effect, a prescription policy tree was constructed.
For 2886 veterans, enzalutamide is associated with an average of 59.94 (95% CI 35.60-84.28) more days of survival than abiraterone. The increase in overall survival duration for the 2 drugs varied across patient demographics, test results, and comorbidities. Two data-driven subgroups of patients were identified by ranking them on their augmented inverse-propensity weighted (AIPW) scores. The average AIPW scores for the 2 subgroups were 19.36 (95% CI -16.93 to 55.65) and 100.68 (95% CI 62.46-138.89). Based on visualization and t test, the AIPW score for low and high subgroups was significant (P=.003), thereby supporting heterogeneity. The analysis resulted in a set of prescription rules for the 2 ARPIs based on a few covariates available to the physicians at the time of prescription.
This study of 2886 veterans showed evidence of heterogeneity and that survival days may be improved for certain patients with mCRPC based on the medication prescribed. Findings suggest that prescription rules based on the patient characteristics, laboratory test results, and comorbidities available to the physician at the time of prescription could improve survival by providing personalized treatment decisions.
Gopukumar D
,Menon N
,Schoen MW
《JMIR Medical Informatics》
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
Survival estimation for patients with symptomatic skeletal metastases ideally should be made before a type of local treatment has already been determined. Currently available survival prediction tools, however, were generated using data from patients treated either operatively or with local radiation alone, raising concerns about whether they would generalize well to all patients presenting for assessment. The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA), trained with institution-based data of surgically treated patients, and the Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy model (METSSS), trained with registry-based data of patients treated with radiotherapy alone, are two of the most recently developed survival prediction models, but they have not been tested on patients whose local treatment strategy is not yet decided.
(1) Which of these two survival prediction models performed better in a mixed cohort made up both of patients who received local treatment with surgery followed by radiotherapy and who had radiation alone for symptomatic bone metastases? (2) Which model performed better among patients whose local treatment consisted of only palliative radiotherapy? (3) Are laboratory values used by SORG-MLA, which are not included in METSSS, independently associated with survival after controlling for predictions made by METSSS?
Between 2010 and 2018, we provided local treatment for 2113 adult patients with skeletal metastases in the extremities at an urban tertiary referral academic medical center using one of two strategies: (1) surgery followed by postoperative radiotherapy or (2) palliative radiotherapy alone. Every patient's survivorship status was ascertained either by their medical records or the national death registry from the Taiwanese National Health Insurance Administration. After applying a priori designated exclusion criteria, 91% (1920) were analyzed here. Among them, 48% (920) of the patients were female, and the median (IQR) age was 62 years (53 to 70 years). Lung was the most common primary tumor site (41% [782]), and 59% (1128) of patients had other skeletal metastases in addition to the treated lesion(s). In general, the indications for surgery were the presence of a complete pathologic fracture or an impending pathologic fracture, defined as having a Mirels score of ≥ 9, in patients with an American Society of Anesthesiologists (ASA) classification of less than or equal to IV and who were considered fit for surgery. The indications for radiotherapy were relief of pain, local tumor control, prevention of skeletal-related events, and any combination of the above. In all, 84% (1610) of the patients received palliative radiotherapy alone as local treatment for the target lesion(s), and 16% (310) underwent surgery followed by postoperative radiotherapy. Neither METSSS nor SORG-MLA was used at the point of care to aid clinical decision-making during the treatment period. Survival was retrospectively estimated by these two models to test their potential for providing survival probabilities. We first compared SORG to METSSS in the entire population. Then, we repeated the comparison in patients who received local treatment with palliative radiation alone. We assessed model performance by area under the receiver operating characteristic curve (AUROC), calibration analysis, Brier score, and decision curve analysis (DCA). The AUROC measures discrimination, which is the ability to distinguish patients with the event of interest (such as death at a particular time point) from those without. AUROC typically ranges from 0.5 to 1.0, with 0.5 indicating random guessing and 1.0 a perfect prediction, and in general, an AUROC of ≥ 0.7 indicates adequate discrimination for clinical use. Calibration refers to the agreement between the predicted outcomes (in this case, survival probabilities) and the actual outcomes, with a perfect calibration curve having an intercept of 0 and a slope of 1. A positive intercept indicates that the actual survival is generally underestimated by the prediction model, and a negative intercept suggests the opposite (overestimation). When comparing models, an intercept closer to 0 typically indicates better calibration. Calibration can also be summarized as log(O:E), the logarithm scale of the ratio of observed (O) to expected (E) survivors. A log(O:E) > 0 signals an underestimation (the observed survival is greater than the predicted survival); and a log(O:E) < 0 indicates the opposite (the observed survival is lower than the predicted survival). A model with a log(O:E) closer to 0 is generally considered better calibrated. The Brier score is the mean squared difference between the model predictions and the observed outcomes, and it ranges from 0 (best prediction) to 1 (worst prediction). The Brier score captures both discrimination and calibration, and it is considered a measure of overall model performance. In Brier score analysis, the "null model" assigns a predicted probability equal to the prevalence of the outcome and represents a model that adds no new information. A prediction model should achieve a Brier score at least lower than the null-model Brier score to be considered as useful. The DCA was developed as a method to determine whether using a model to inform treatment decisions would do more good than harm. It plots the net benefit of making decisions based on the model's predictions across all possible risk thresholds (or cost-to-benefit ratios) in relation to the two default strategies of treating all or no patients. The care provider can decide on an acceptable risk threshold for the proposed treatment in an individual and assess the corresponding net benefit to determine whether consulting with the model is superior to adopting the default strategies. Finally, we examined whether laboratory data, which were not included in the METSSS model, would have been independently associated with survival after controlling for the METSSS model's predictions by using the multivariable logistic and Cox proportional hazards regression analyses.
Between the two models, only SORG-MLA achieved adequate discrimination (an AUROC of > 0.7) in the entire cohort (of patients treated operatively or with radiation alone) and in the subgroup of patients treated with palliative radiotherapy alone. SORG-MLA outperformed METSSS by a wide margin on discrimination, calibration, and Brier score analyses in not only the entire cohort but also the subgroup of patients whose local treatment consisted of radiotherapy alone. In both the entire cohort and the subgroup, DCA demonstrated that SORG-MLA provided more net benefit compared with the two default strategies (of treating all or no patients) and compared with METSSS when risk thresholds ranged from 0.2 to 0.9 at both 90 days and 1 year, indicating that using SORG-MLA as a decision-making aid was beneficial when a patient's individualized risk threshold for opting for treatment was 0.2 to 0.9. Higher albumin, lower alkaline phosphatase, lower calcium, higher hemoglobin, lower international normalized ratio, higher lymphocytes, lower neutrophils, lower neutrophil-to-lymphocyte ratio, lower platelet-to-lymphocyte ratio, higher sodium, and lower white blood cells were independently associated with better 1-year and overall survival after adjusting for the predictions made by METSSS.
Based on these discoveries, clinicians might choose to consult SORG-MLA instead of METSSS for survival estimation in patients with long-bone metastases presenting for evaluation of local treatment. Basing a treatment decision on the predictions of SORG-MLA could be beneficial when a patient's individualized risk threshold for opting to undergo a particular treatment strategy ranged from 0.2 to 0.9. Future studies might investigate relevant laboratory items when constructing or refining a survival estimation model because these data demonstrated prognostic value independent of the predictions of the METSSS model, and future studies might also seek to keep these models up to date using data from diverse, contemporary patients undergoing both modern operative and nonoperative treatments.
Level III, diagnostic study.
Lee CC
,Chen CW
,Yen HK
,Lin YP
,Lai CY
,Wang JL
,Groot OQ
,Janssen SJ
,Schwab JH
,Hsu FM
,Lin WH
... -
《-》