Enhanced Fenton catalytic degradation of methylene blue by the synergistic effect of Fe and Ce in chitosan-supported mixed-metal MOFs (Fe/Ce-BDC@CS).

来自 PUBMED

作者:

Zheng YRan LZhang XZhu LZhang HXu JZhao QZhou LYe Z

展开

摘要:

Methylene blue (MB) is a refractory organic pollutant that poses a potential threat to the aquatic environment. Fenton reaction is considered a primrose strategy to treat MB. However, the traditional Fenton process is plagued by narrow pH application range, poor stability, and secondary pollution. To solve these problems, many Fenton-like catalysts including metal-organic frameworks (MOFs) have been prepared. Herein, a novel bimetallic MOF (Fe/Ce-BDC@CS) was prepared through simple adsorption for the effective removal of MB, where chitosan (CS) was used as the carrier. The degradation performance of Fe/Ce-BDC@CS (100 % within 20 min) was better than that of most reported monometallic MOFs. Moreover, Fe/Ce-BDC@CS exhibited good repeatability and its anti-interference performance of some inorganic ions was also remarkable. Column loading experiments showed that the removal efficiency of MB was still about 50 % over 155 h with a flowing speed of 0.30 L/h. Comparative analysis indicated that such excellent performances could be attributed to the synergistic effect between Fe and Ce. Furthermore, the results of quenching tests indicate that OH, O2-, and 1O2 contributed to MB degradation. In brief, Fe/Ce-BDC@CS has promising prospects in MB treatment, which can provide scientific references for the design and application of bimetallic MOFs.

收起

展开

DOI:

10.1016/j.ijbiomac.2024.134872

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(102)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读