Self-Administered Interventions Based on Natural Language Processing Models for Reducing Depressive and Anxiety Symptoms: Systematic Review and Meta-Analysis.

来自 PUBMED

摘要:

The introduction of natural language processing (NLP) technologies has significantly enhanced the potential of self-administered interventions for treating anxiety and depression by improving human-computer interactions. Although these advances, particularly in complex models such as generative artificial intelligence (AI), are highly promising, robust evidence validating the effectiveness of the interventions remains sparse. The aim of this study was to determine whether self-administered interventions based on NLP models can reduce depressive and anxiety symptoms. We conducted a systematic review and meta-analysis. We searched Web of Science, Scopus, MEDLINE, PsycINFO, IEEE Xplore, Embase, and Cochrane Library from inception to November 3, 2023. We included studies with participants of any age diagnosed with depression or anxiety through professional consultation or validated psychometric instruments. Interventions had to be self-administered and based on NLP models, with passive or active comparators. Outcomes measured included depressive and anxiety symptom scores. We included randomized controlled trials and quasi-experimental studies but excluded narrative, systematic, and scoping reviews. Data extraction was performed independently by pairs of authors using a predefined form. Meta-analysis was conducted using standardized mean differences (SMDs) and random effects models to account for heterogeneity. In all, 21 articles were selected for review, of which 76% (16/21) were included in the meta-analysis for each outcome. Most of the studies (16/21, 76%) were recent (2020-2023), with interventions being mostly AI-based NLP models (11/21, 52%); most (19/21, 90%) delivered some form of therapy (primarily cognitive behavioral therapy: 16/19, 84%). The overall meta-analysis showed that self-administered interventions based on NLP models were significantly more effective in reducing both depressive (SMD 0.819, 95% CI 0.389-1.250; P<.001) and anxiety (SMD 0.272, 95% CI 0.116-0.428; P=.001) symptoms compared to various control conditions. Subgroup analysis indicated that AI-based NLP models were effective in reducing depressive symptoms (SMD 0.821, 95% CI 0.207-1.436; P<.001) compared to pooled control conditions. Rule-based NLP models showed effectiveness in reducing both depressive (SMD 0.854, 95% CI 0.172-1.537; P=.01) and anxiety (SMD 0.347, 95% CI 0.116-0.578; P=.003) symptoms. The meta-regression showed no significant association between participants' mean age and treatment outcomes (all P>.05). Although the findings were positive, the overall certainty of evidence was very low, mainly due to a high risk of bias, heterogeneity, and potential publication bias. Our findings support the effectiveness of self-administered NLP-based interventions in alleviating depressive and anxiety symptoms, highlighting their potential to increase accessibility to, and reduce costs in, mental health care. Although the results were encouraging, the certainty of evidence was low, underscoring the need for further high-quality randomized controlled trials and studies examining implementation and usability. These interventions could become valuable components of public health strategies to address mental health issues. PROSPERO International Prospective Register of Systematic Reviews CRD42023472120; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023472120.

收起

展开

DOI:

10.2196/59560

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(51)

引证文献(0)

来源期刊

JMIR Mental Health

影响因子:6.326

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读