Quantification of high-density lipoprotein particle number by proton nuclear magnetic resonance: don't believe the numbers.

来自 PUBMED

作者:

Vaisar THeinecke J

展开

摘要:

Proton nuclear magnetic resonance (NMR) can rapidly assess lipoprotein concentrations and sizes in biological samples. It may be especially useful for quantifying high-density lipoprotein (HDL), which exhibits diverse particle sizes and concentrations. We provide a critical review of the strengths and limitations of NMR for quantifying HDL subclasses. Recent studies using NMR have shed light on HDL's role in various disorders, ranging from residual cardiovascular risk to host susceptibility to infection. However, accurately quantifying HDL particle number, size, and concentration (HDL-P) remains a challenge. Discrepancies exist between NMR and other methods such as gel electrophoresis, ion mobility analysis and size-exclusion chromatography in estimating the abundance of HDL species and the ratio of apolipoprotein A-I (APOA1) to HDL particles. NMR is a low-cost method for quantifying HDL-P that is readily applicable to clinical and translational studies. However, inconsistencies between the results of NMR quantification of HDL-P and other independent methods hinder the interpretation of NMR results. Because proton NMR apparently fails to accurately quantify the sizes and concentrations of HDL, the relevance of such studies to HDL biology poses challenges. This limits our understanding of pathophysiological implications of HDL-P as determined by NMR, particularly in determining cardiovascular disease (CVD) risk.

收起

展开

DOI:

10.1097/MOL.0000000000000948

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(34)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读