-
METTL3 and IGF2BP1-Mediated m6A Modification of ZHX2 Promotes Tumor Property of Renal Cell Carcinoma.
Renal cell carcinoma (RCC) is a common type of kidney cancer with limited treatment options and a high mortality rate. Therefore, it is essential to understand the role and mechanism of key genes in RCC development and progression. This study aimed to analyze the role of zinc fingers and homeoboxes 2 (ZHX2) in RCC and the underlying mechanism.
RNA expression was analyzed by quantitative real-time polymerase chain reaction, while protein expression was analyzed by Western blotting assay and immunohistochemistry assay. Cell viability was evaluated using CCK-8 assay, and cell proliferation was assessed by EdU assay. The rate of cell apoptosis was quantified by flow cytometry. Transwell assays were conducted to analyze cell migration and invasion. The sphere formation assay was performed to assess the formation of microspheres. Additionally, m6A RNA immunoprecipitation assay and RNA immunoprecipitation assay were utilized to investigate the relationship between ZHX2 and two proteins, methyltransferase like 3 (METTL3) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). The stability of ZHX2 mRNA was analyzed through the Actinomycin D assay. Furthermore, a xenograft mouse model assay was conducted to analyze the effect of ZHX2 overexpression and METTL3 silencing on RCC cell tumor properties in vivo.
ZHX2 expression was upregulated in both RCC tissues and cells when compared with healthy renal tissues and human renal cortex proximal convoluted tubule epithelial cells. Depletion of ZHX2 inhibited RCC cell proliferation, migration, invasion, and spheroid-forming capacity but promoted cell apoptosis. Moreover, it was found that METTL3-mediated m6A methylation of ZHX2 and IGF2BP1 also stabilized ZHX2 through m6A methylation modification. Furthermore, ZHX2 overexpression showed a potential for attenuating the effects induced by METTL3 silencing and counteracted the inhibitory effect of METTL3 depletion on tumor formation in vivo.
METTL3 and IGF2BP1-mediated m6A modification of ZHX2 promoted RCC progression. The finding suggests that ZHX2 may serve as a potential therapeutic target in RCC, providing valuable insights for future clinical interventions.
Xiao B
,Li Y
,Yang Y
,Chen C
,Gong S
,Li H
,Yao Q
,Wang L
... -
《-》
-
METTL3/IGF2BP1 influences the development of non-small-cell lung cancer by mediating m6A methylation modification of TRPV1.
Methyltransferase 3 (METTL3) accelerates N6-methyladenosine (m6A) modifications and affects cancer progression, including non-small-cell lung cancer (NSCLC). In this study, we aimed to explore the regulatory mechanisms of METTL3 underling NSCLC.
Immunohistochemical assay, quantitative real-time polymerase chain reaction (qRT-PCR) assay, and western blot assay were conducted for gene expression. MTT assay and colony formation assay were performed to explore cell proliferation capacity. Cell apoptosis and THP-1 cell polarization were estimated by flow cytometry analysis. Cell migration and invasion capacities were evaluated by transwell assay. Methylated RNA immunoprecipitation assay, dual-luciferase reporter assay, actinomycin D treatment and RIP assay were performed to analyze the relationships of METTL3, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1), and transient receptor potential cation channel subfamily V member 1 (TRPV1). The functions of METTL3 and TRPV1 in vivo were investigated through establishing the murine xenograft model.
TRPV1 expression was upregulated in NSCLC and related poor prognosis. TRPV1 silencing inhibited NSCLC cell growth and metastasis, induced NSCLC cell apoptosis, and repressed M2 macrophage polarization. The results showed that METTL3 and IGF2BP1 could regulate TRPV1 expression through m6A methylation modification. Moreover, METTL3 deficiency inhibited NSCLC cell growth, metastasis, and M2 macrophage polarization and facilitated NSCLC cell apoptosis, while TRPV1 overexpression restored the impacts. In addition, METTL3 knockdown restrained tumor growth in vivo via regulating TRPV1 expression.
METTL3 bound to IGF2BP1 and enhanced IGF2BP1's m6A recognition of TRPV1 mRNA, thereby promoting NSCLC cell growth and metastasis, and inhibiting M2 macrophage polarization.
Bai W
,Xiao G
,Xie G
,Chen Z
,Xu X
,Zeng J
,Xie J
... -
《-》
-
METTL3 promotes the progression of osteosarcoma through the N6-methyladenosine modification of MCAM via IGF2BP1.
The molecular mechanisms of osteosarcoma (OS) are complex. In this study, we focused on the functions of melanoma cell adhesion molecule (MCAM), methyltransferase 3 (METTL3) and insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) in OS development.
qRT-PCR assay and western blot assay were performed to determine mRNA and protein expression of MCAM, METTL3, IGF2BP1 and YY1. MTT assay and colony formation assay were conducted to assess cell proliferation. Cell apoptosis, invasion and migration were evaluated by flow cytometry analysis, transwell assay and wound-healing assay, respectively. Methylated RNA Immunoprecipitation (MeRIP), dual-luciferase reporter, Co-IP, RIP and ChIP assays were performed to analyze the relationships of MCAM, METTL3, IGF2BP1 and YY1. The functions of METTL3 and MCAM in tumor growth were explored through in vivo experiments.
MCAM was upregulated in OS, and MCAM overexpression promoted OS cell growth, invasion and migration and inhibited apoptosis. METTL3 and IGF2BP1 were demonstrated to mediate the m6A methylation of MCAM. Functionally, METTL3 or IGF2BP1 silencing inhibited OS cell progression, while MCAM overexpression ameliorated the effects. Transcription factor YY1 promoted the transcription level of METTL3 and regulated METTL3 expression in OS cells. Additionally, METTL3 deficiency suppressed tumor growth in vivo, while MCAM overexpression abated the effect.
YY1/METTL3/IGF2BP1/MCAM axis aggravated OS development, which might provide novel therapy targets for OS.
Song D
,Wang Q
,Yan Z
,Su M
,Zhang H
,Shi L
,Fan Y
,Zhang Q
,Yang H
,Zhang D
,Liu Q
... -
《Biology Direct》
-
METTL3 facilitates prostate cancer progression via inducing HOXC6 m6A modification and stabilizing its expression through IGF2BP2-dependent mechanisms.
HOXC6 (Homeobox C6) and methyltransferase-like 3 (METTL3) have been shown to be involved in the progression of prostate cancer (PCa). However, whether HOXC6 performs oncogenic effects in PCa via METTL3-mediated N6-methyladenosine (m6A) modification is not yet reported. The Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, scratch, sphere formation assays were applied for cell growth, invasion, migration and stemness analyses. Glycolysis was evaluated by measuring glucose consumption, lactate generation and ATP/ADP ratio. The N6-methyladenine (m6A) modification profile was determined by RNA immunoprecipitation (Me-RIP) assay. The proteins that interact with PGK1 (phosphoglycerate kinase 1) were confirmed by Co-immunoprecipitation assay. Tumor formation experiments in mice were conducted for in vivo assay. PCa tissues and cells showed highly expressed HOXC6 and METTL3. Functionally, the silencing of HOXC6 or METTL3 suppresses PCa cell proliferation, invasion, migration, stemness, and glycolysis. Moreover, METTL3-induced HOXC6 m6A modification to stabilize its expression. In addition, the m6A reader IGF2BP2 directly recognized and bound to HOXC6 mRNA, and maintained its stability, and was involved in the regulation of HOXC6 expression by METTL3. Furthermore, IGF2BP2 knockdown impaired PCa cell proliferation, invasion, migration, stemness, and glycolysis by regulating HOXC6. Besides that HOXC6 interacted with the glycoytic enzyme PGK1 in PCa cells. In vivo assays further showed that METTL3 silencing reduced the expression of HOXC6 and PGK1, and impeded PCa growth. METTL3 promoted PCa progression by maintaining HOXC6 expression in an m6A-IGF2BP2-dependent mechanism.
He P
,Liu X
,Yu G
,Wang Y
,Wang S
,Liu J
,An Y
... -
《-》
-
Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression.
Lung cancer (LC) remains a threatening health issue worldwide. Methyltransferase-like protein 3 (METTL3) is imperative in carcinogenesis via m6A modification of microRNAs (miRNAs). This study estimated the effect of METTL3 in LC by regulating m6A methylation-mediated pri-miR-663 processing.
miR-663 expression in 4 LC cell lines and normal HBE cells was determined using RT-qPCR. A549 and PC9 LC cells selected for in vitro studies were transfected with miR-663 mimics or inhibitor. Cell viability, migration, invasion, proliferation, and apoptosis were detected by CCK-8, Transwell, EdU, and flow cytometry assays. The downstream target genes and binding sites of miR-663 were predicted via Starbase database and validated by dual-luciferase assay. LC cells were delivered with oe-METTL3/sh-METTL3. Crosslinking between METTL3 and DGCR8 was verified by co-immunoprecipitation. Levels of m6A, miR-663, and pri-miR-663 were measured by m6A dot blot assay and RT-qPCR. m6A modification of pri-miR-663 was verified by Me-RIP assay. Finally, the effects of METTL3 in vivo were ascertained by tumor xenograft in nude mice.
miR-663 was upregulated in LC cells, and miR-663 overexpression promoted cell proliferation, migration, invasion, and inhibited apoptosis, but miR-663 knockdown exerted the opposite effects. miR-663 repressed SOCS6 expression. SOCS6 overexpression annulled the promotion of miR-663 on LC cell growth. METTL3 bound to DGCR8, and METTL3 silencing elevated the levels of pri-miR-663 and m6A methylation-modified pri-miR-663, and suppressed miR-663 maturation and miR-663 expression. METTL3 facilitated tumor growth in mice through the miR-663/SOCS6 axis.
METTL3 promotes LC progression by accelerating m6A methylation-mediated pri-miR-663 processing and repressing SOCS6.
Li S
,Lu X
,Zheng D
,Chen W
,Li Y
,Li F
... -
《-》