Polystyrene microplastics enhanced the toxicity of cadmium to rice seedlings: Evidence from rice growth, physiology, and element metabolism.
Microplastics (MPs) and cadmium (Cd) are toxic to rice; however, the effects and mechanisms of their combined exposure are unclear. The combined exposure effects of polystyrene microplastics (PS-MPs) with different particle sizes (1-10 μm, 50-150 μm) and concentrations (50, 500 mg·L-1) and Cd on rice were explored. PS-MPs combined with Cd amplifies the inhibition of each individual exposure on the height and biomass of rice seedlings, and they showed antagonistic effects. PS-MPs reduced the content of chlorophyll and increased the content of carotenoid rice seedlings significantly. High concentrations of PS-MPs enhanced the inhibition of Cd on chlorophyll content. Cd, PS-MPs single and combined exposures significantly altered the antioxidant enzyme (POD, CAT, SOD) activities in rice seedlings. Under PS-MPs exposure, overall, the MDA content in shoots and roots exhibited opposite trends, with a decrease in the former and an increase in the latter. In comparison with Cd treatment, the combined exposures' shoot and root MDA content was reduced. Cd and PS-MPs showed "low concentration antagonism, high concentration synergism" on the composite physiological indexes of rice seedlings. PS-MPs significantly increased the Cd accumulation in shoots. PS-MPs promoted the root absorption of Cd at 50 mg·L-1 while inhibited at 500 mg·L-1. Cd and PS-MPs treatments interfered with the balance of microelements (Mn, Zn, Fe, Cu, B, Mo) and macroelements (S, P, K, Mg, Ca) in rice seedlings; Mn was significantly inhibited. PS-MPs can enhance of Cd's toxicity to rice seedlings. The combined toxic effects of the two contaminants appear to be antagonistic or synergistic, relying on the particle size and concentration of the PS-MPs. Our findings offer information to help people understanding the combined toxicity of Cd and MPs on crops.
Jiang M
,Zhao W
,Liang Q
,Cai M
,Fan X
,Hu S
,Zhu Y
,Xie H
,Peng C
,Liu J
... -
《-》
Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress.
Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings.
Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance.
Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.
Zhu S
,Sun S
,Zhao W
,Yang X
,Mao H
,Sheng L
,Chen Z
... -
《-》
Oxidative Damage in Roots of Rice (Oryza sativa L.) Seedlings Exposed to Microplastics or Combined with Cadmium.
This study aimed to investigate the effect of 10-40 mg L-1 polystyrene microplastics (PS-MPs), 0.05 mg L-1 cadmium (Cd) and their combination on the growth and related physiological and toxicological responses in Oryza sativa L. seedling roots. Results showed that the fresh weight, dry weight and root lengths of treatments by PS-MPs, Cd single and combinative were all lower than the control, and opposite phenomenon appeared in production of superoxide radical (O2-.), malondialdehyde (MDA) and carbonylated protein. Superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities induced by 10-40 mg L-1 PS-MPs and combination with Cd were almost higher than those by Cd alone, expression of heat shock protein (HSP)70 and carbonylated protein slightly decreased. In compound exposure, 10-20 mg L-1 PS-MPs alleviated Cd damage and promoted root growth by increasing SOD and POD activities, but 40 mg L-1 PS-MPs accelerated the accumulation of Cd, MDA, and O2-., which was responsible for decreasing root biomass and the aggravating necrosis of root tip cells.
Liu L
,Zhou Y
,Wang C
,Liu H
,Xie R
,Wang L
,Hong T
,Hu Q
... -
《-》