Temporal Trends in Race and Sex Differences in Cardiac Arrest Mortality in the USA, 1999-2020.

来自 PUBMED

作者:

Gonuguntla KChobufo MDShaik ARoma NPenmetsa MThyagaturu HPatel NTaha AAlruwaili WBansal RKhan MZSattar YBalla S

展开

摘要:

Cardiac arrest (CA) affects over 600,000 patients in the USA annually. Despite large-scale public health and educational initiatives, survival rates are lower in certain racial and socioeconomic groups. A county-level cross-sectional longitudinal study using death data of patients aged 15 years or more from the US Centers for Disease Control and Prevention's Wide-Ranging Online Data for Epidemiologic Research (WONDER) database from 1999 to 2020. CAs were identified using the International Classification of Diseases, tenth revision, clinical modification codes. The CA-related deaths between 1999 and 2020 were 7,710,211 in the entire USA. The annual CA related age-adjusted mortality rates (CA-MR) declined through 2019 (132.9 to 89.7 per 100,000 residents), followed by an increase in 2020 (104.5 per 100,000). White patients constituted 82 % of all deaths and 51 % were female. The overall CA-MR during the study period was 104.48 per 100,000 persons. The CA-MR was higher for men as compared with women (123.5 vs. 89.7 per 100,000) and higher for Black as compared with White adults (154.4 vs. 99.1 per 100,000). CA-MR in the overall population has declined, followed by an increase in 2020, which is likely the impact of the COVID-19 pandemic. There were also significant racial and sex differences in mortality rates.

收起

展开

DOI:

10.1016/j.jjcc.2024.08.006

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读