Syzygium cumini (L.) skeels mitigate diabetic nephropathy by regulating Nrf2 pathway and mitocyhondrial dysfunction: In vitro and in vivo studies.
Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. 200C, 30C, and mother tincture [MT] are used to treat diabetes. This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating diabetic nephropathy (DN).
Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 μL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 μg/mL) were incubated with renal cells (HEK-293) for 24 h. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed.
In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex.
SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.
Bangar NS
,Dixit A
,Apte MM
,Tupe RS
... -
《-》
Integrated network pharmacology and pharmacological investigations to discover the active compounds of Toona sinensis pericarps against diabetic nephropathy.
Toona sinensis (A. Juss.) Roem. Is a deciduous woody plant native to Eastern and Southeastern Asia. Different parts of this plant have a long history of being applied as traditional medicines to treat various diseases. The fruits have been used for antidiabetic, antidiabetic nephropathy (anti-DN), antioxidant, anti-inflammatory, and other activities.
The purpose of this study was to investigate the effects of EtOAc (PEAE) and n-BuOH extracts (PNBE) from T. sinensis pericarps (TSP) on kidney injury in high-fat and high-glucose diet (HFD)/streptozotocin (STZ)-induced DN mice by network pharmacology and pharmacological investigations, as well as to further discover active compounds that could ameliorate oxidative stress and inflammation, thereby delaying DN progression by regulating the Nrf2/NF-κB pathway in high glucose (HG)-induced glomerular mesangial cells (GMCs).
The targets of TSP 1-16 with DN were analyzed by network pharmacology. HFD/STZ-induced DN mouse models were established to evaluate the effects of PEAE and PNBE. Six groups were divided into normal, model, PEAE100, PEAE400, PNBE100, and PNBE400 groups. Fasting blood glucose (FBG) levels, organ indices, plasma MDA, SOD, TNF-α, and IL-6 levels, as well as renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-β1 levels were determined, along with hematoxylin-eosin (H&E) and immunohistochemical (IHC) analysis of kidney sections. Furthermore, GMC activity screening combined with molecular docking was utilized to discover active compounds targeting HO-1, TNF-α, and IL-6. Moreover, western blotting assays were performed to validate the mechanism of Nrf2 and NF-κB in HG-induced GMCs.
Network pharmacology predicted that the main targets of PEAE and PNBE in the treatment of DN include IL-6, INS, TNF, ALB, GAPDH, IL-1β, TP53, EGFR, and CASP3. Additionally, major pathways include AGE-RAGE and IL-17. In vivo experiments, treatment with PEAE and PNBE effectively reduced FBG levels and organ indices, while plasma MDA, SOD, TNF-α, and IL-6 levels, renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-β1 levels, and renal function were significantly improved. PEAE and PNBE significantly improved glomerular and tubule injury, and inhibited the development of DN by regulating the levels of oxidative stress and inflammation-related factors. In vitro experiments, compound 11 strongly activated HO-1 and inhibited TNF-α and IL-6. The molecular docking results revealed that compound 11 exhibited a high binding affinity towards the targets HO-1, TNF-α, and IL-6 (<-6 kcal/mol). Western blotting results showed compound 11 effectively regulated Nrf2 and NF-κB p65 protein levels, and significantly improved oxidative stress damage and inflammatory responses in HG-induced GMCs.
PEAE, PNBE, and their compounds, especially compound 11, may have the potential to prevent and treat DN, and are promising natural nephroprotective agents.
Li H
,Wang R
,Chen Y
,Zhao M
,Lan S
,Zhao C
,Li X
,Li W
... -
《-》
Betulinic acid, isolated from the leaves of Syzygium cumini (L.) Skeels, ameliorates the proteinuria in experimental membranous nephropathy through regulating Nrf2/NF-κB pathways.
Membranous nephropathy (MN) is associated with increased oxidative stress and inflammatory markers in the kidney. Betulinic acid (BA) is a potent antioxidant and anti-inflammatory compound isolated from the leaves of Syzygium cumini (L.) Skeels. In the present study, we investigated the effects of BA on experimental MN in rats and explored the mechanisms by which it enhances antioxidant activities and resolves inflammatory condition in experimental MN. Passive Heymann nephritis (PHN) was induced in Sprague-Dawley rats by a single tail vein injection of anti- Fx1A antiserum. The rats were orally administered BA (25 and 50 mg kg -1 d -1) or dexamethasone (DEX; 0.07 mg kg-1, reference compound) for 4 weeks after the induction of PHN. Blood, urine, and kidney tissue were collected for analysis at the end of the study. Treatment of PHN rats with BA or DEX significantly attenuated renal dysfunction, histopathological alterations and reduced immune complex deposition in the kidneys. Furthermore, BA ameliorated mRNA and protein expression of NF-κB, iNOS, TNF-α, Nrf2, HO-1 and NQO1 in the kidney. BA also restored malondialdehyde level and antioxidant enzyme activities in the kidney. In a nutshell, the protective effect of BA can be explained by its anti-inflammatory and anti-oxidant activities, which in turn is due to downregulation of NF-κB pathway and activation of Nrf2. The results indicated that BA can effectively suppress experimental PHN in rats by regulating Nrf2/NF-κB pathways.
Sutariya B
,Taneja N
,Saraf M
《-》
Apigenin-Loaded Solid Lipid Nanoparticle Attenuates Diabetic Nephropathy Induced by Streptozotocin Nicotinamide Through Nrf2/HO-1/NF-kB Signalling Pathway.
Apigenin is known to have a broad-spectrum efficacy in oxidative stress and conditions due to inflammation, although weak absorption, fast metabolic rate and a fast elimination (systemic) limit the pharmacological efficacy of this drug. Hence, we propose the usage of highly bioavailable Apigenin-solid lipid nanoparticles (SLNPs) to recognize such limitations. The defensive function of Apigenin-SLNPs on renal damage induced by streptozotocin (STZ) in animals was studied.
We initially injected the rats with 35 mg kg-1 streptozocin intraperitoneally, and after 7 days, the rats were then injected 150 mg kg-1 of metformin intragastrically followed by a once-daily intragastric dose of Apigenin-SLNP (25 or 50 mg kg-1) for a continuous period of 30 days. We then measured the level of insulin and blood glucose, superoxide dismutase, catalase and malondialdehyde in the tissues of the kidney. We also observed messenger-RNA expression of Interleukin-1β, Interleukin-6 and Tumor Necrosis Factor-alpha in renal tissue through RT-PCR technique. Moreover, H&E staining and Western blotting observed the histopathological variations and protein expression of nuclear factor erythroid 2-related factor 2/heme oxygenase/Nuclear Factor-κB signaling pathway, respectively.
An enhancement in the expressing of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 and a suppression in the expression of Nuclear Factor-κB occurred due to Apigenin-SLNPs treatment, which was a result of the protective mechanism of Apigenin-SLNPs which is because of not only its anti-inflammatory function (by inhibition of release of inflammatory factors) but also their anti-oxidant activity (through reduction of lipid peroxidation production).
We found that a protective effect on diabetic nephropathy was shown due to Apigenin-SLNPs, in rats induced with streptozocin maybe through the pathway of nuclear factor erythroid 2-related factor 2/heme oxygenase-1/Nuclear Factor-κB.
Li P
,Bukhari SNA
,Khan T
,Chitti R
,Bevoor DB
,Hiremath AR
,SreeHarsha N
,Singh Y
,Gubbiyappa KS
... -
《International Journal of Nanomedicine》