-
Discovery of novel pyrazolo[1,5-a]pyrimidine derivatives as selective ROCK2 inhibitors with anti-breast cancer migration and invasion activities.
Rho-associated coiled-coil kinase (ROCK) is involved in multiple cellular activities regulating the actin cytoskeleton, such as cell morphology, adhesion, and migration. The inhibition of ROCK is a feasible strategy to suppress breast cancer metastasis. Herein, based on Belumosudil, a series of pyrazolo[1,5-a]pyrimidine derivatives as selective ROCK2 inhibitors were designed and synthesized. Through systematic investigation of SARs, the piperazine analog 7u was identified with optimum ROCK2 inhibitory activity (IC50 = 36.8 nM) and excellent selectivity over the isoform protein ROCK1 (>250-fold). Intriguingly, upon treatment with 7u, the arrangement of the MDA-MB-231 cytoskeleton was affected accompanied by the alteration of morphology. Furthermore, cell scratch and transwell assays indicated that 7u inhibited MDA-MB-231 cell migration and invasion in a dose-dependent manner. Ultimately, the binding model of 7u with ROCK2 well accounted for the superior activities of 7u as a promising ROCK2 inhibitor with the potential application in breast cancer metastasis treatment.
Cao Z
,Wei X
,Xing S
,Zhang J
,Wang S
,Yue L
,Zhang J
,Jiang N
,Zhai X
... -
《-》
-
Design, synthesis, antineoplastic activity of new pyrazolo[3,4-d]pyrimidine derivatives as dual CDK2/GSK3β kinase inhibitors; molecular docking study, and ADME prediction.
In the current study, novel pyrazolo[3,4-d]pyrimidine derivatives 5a-h were designed and synthesized as targeted anti-cancer agents through dual CDK2/GSK-3β inhibition. The designed compounds demonstrated moderate to potent activity on the evaluated cancer cell lines (MCF-7 and T-47D). Compounds 5c and 5 g showed the most promising cytotoxic activity against the tested cell lines surpassing that of the used reference standard; staurosporine. On the other hand, both compounds showed good safety and tolerability on normal fibroblast cell line (MCR5). The final compounds 5c and 5 g showed a promising dual CDK2/GSK-3β inhibitory activity with IC50 of 0.244 and 0.128 μM, respectively, against CDK2, and IC50 of 0.317 and 0.160 μM, respectively, against GSK-3β. Investigating the effect of compounds 5c and 5 g on CDK2 and GSK-3β downstream cascades showed that they reduced the relative cellular content of phosphorylated RB1 and β-catenin compared to that in the untreated MCF-7 cells. Moreover, compounds 5c and 5 g showed a reasonable selective inhibition against the target kinases CDK2/GSK-3β in comparison to a set of seven off-target kinases. Furthermore, the most potent compound 5 g caused cell cycle arrest at the S phase in MCF-7 cells preventing the cells' progression to G2/M phase inducing cell apoptosis. Molecular docking studies showed that the final pyrazolo[3,4-d]pyrimidine derivatives have analogous binding modes in the target kinases interacting with the hinge region key amino acids. Molecular dynamics simulations confirmed the predicted binding mode by molecular docking. Moreover, in silico predictions indicated their favorable physicochemical and pharmacokinetic properties in addition to their promising cytotoxic activity.
Nemr MTM
,Elshewy A
,Ibrahim ML
,El Kerdawy AM
,Halim PA
... -
《-》
-
Molecular docking approach for the design and synthesis of new pyrazolopyrimidine analogs of roscovitine as potential CDK2 inhibitors endowed with pronounced anticancer activity.
Cyclin-dependent kinase 2 (CDK2) is a vital protein for controlling cell cycle progression that is critically associated with various malignancies and its inhibition could offer a convenient therapeutic approach in designing anticancer remedies. Consequently, this study aimed to design and synthesize new CDK2 inhibitors featuring roscovitine as a template model. The purine ring of roscovitine was bioisosterically replaced with the pyrazolo[3,4-d]pyrimidine scaffold, in addition to some modifications in the side chains. A preliminary molecular docking study for the target chemotypes in the CDK2 binding domain revealed their ability to accomplish similar binding patterns and interactions to that of the lead compound roscovitine. Afterwards, synthesis of the new derivatives was accomplished. Then, the initial anticancer screening at a single dose by the NCI revealed that compounds 7a, 9c, 11c, 17a and 17b achieved the highest GI% values reaching up to 150 % indicating their remarkable activity. These derivatives were subsequently selected to undertake five-dose testing, where compounds 7a, 9c, 11c and 17a unveiled the most pronounced activity against almost the full panel with GI50 ranges; 1.41-28.2, 0.116-2.39, 0.578-60.6 and 1.75-42.4 µM, respectively and full panel GI50 (MG-MID); 8.24, 0.6, 2.46 and 6.84 µM, respectively. CDK2 inhibition assay presented compounds 7a and 9c as the most potent inhibitors with IC50 values of 0.262 and 0.281 µM, respectively which are nearly 2.4 folds higher than the reference ligand roscovitine (IC50 = 0.641 µM). Besides, flow cytometric analysis on the most susceptible and safe cell lines depicted that 7a caused cell cycle arrest at G1/S phase in renal cancer cell line (RXF393) while 9c led to cell growth arrest at S phase in breast cancer cell line (T-47D) along with pronounced apoptotic induction in the mentioned cell lines. These findings afforded new anticancer pyrazolo[3,4-d]pyrimidine, roscovitine analogs, acting via CDK2 inhibition.
Hamed OA
,Abou-Elmagd El-Sayed N
,Mahmoud WR
,F Elmasry G
... -
《-》
-
Applying molecular hybridization to design a new class of pyrazolo[3,4-d]pyrimidines as Src inhibitors active in hepatocellular carcinoma.
Hepatocellular carcinoma (HCC) is the most common type of liver solid tumor and the second leading cause of cancer-related deaths worldwide. Although new treatment options have been recently approved, the development of tumor resistance and the poor prognosis for advanced HCC make the current standard of care unsatisfying. In this scenario, the non-receptor tyrosine kinase (TK) c-Src emerged as a promising target for developing new anti-HCC agents. Our group reported a large library of pyrazolo[3,4-d]pyrimidines active as potent c-Src inhibitors. Starting from these data, we applied a molecular hybridization approach to combine the in-house pyrazolo[3,4-d]pyrimidine SI192 with the approved TK inhibitor (TKI) dasatinib, with the aim of identifying a new generation of Src inhibitors. Enzymatic results prompted us to design second-generation compounds with a better binding profile based on a hit optimization protocol comprised of molecular modeling and on-paper rational design. This investigation led to the identification of a few nanomolar Src inhibitors active toward two HCC cell lines (HepG2 and HUH-7) selected according to their high and low c-Src expression, respectively. In particular, 7e showed an IC50 value of 0.7 nM toward Src and a relevant antiproliferative efficacy on HepG2 cells after 72h (IC50 = 2.47 μM). Furthermore, 7e exhibited a cytotoxic profile better than dasatinib. The ADME profile suggested that 7e deserves further investigation as a promising TKI in cancer therapies. Finally, 7e's ability to inhibit HepG2 cell proliferation, elicit an irreversible cytotoxic effect, arrest cellular migration, and induce apoptotic-mediated cell death was assessed.
Di Maria S
,Passannanti R
,Poggialini F
,Vagaggini C
,Serafinelli A
,Bianchi E
,Governa P
,Botta L
,Maga G
,Crespan E
,Manetti F
,Dreassi E
,Musumeci F
,Carbone A
,Schenone S
... -
《-》
-
Synthesis, design, and antiproliferative evaluation of 6-(N-Substituted-methyl)pyrazolo[3,4-d]pyrimidines as the potent anti-leukemia agents.
Pyrazolopyrimidine derivatives, including pyrazolopyrimidines, 6-aminopyrazolopyrimidines, 6-[(formyloxy)methyl]pyrazolopyrimidines, 6-(hydroxymethyl)pyrazolopyrimidine, and 6-(aminomethyl)pyrazolopyrimidines have been successfully prepared and tested against NCI-H226, NPC-TW01, and Jurkat cancer cell lines. Among the tested pyrazolopyrimidine compounds, we found 6-aminopyrazolopyrimidines and 6-(aminomethyl)pyrazolopyrimidines with essential o-ClPh or p-ClPh substituted moieties on N-1 pyrazole ring exhibited the best IC50 inhibition activity for Jurkat cells. Furthermore, optimization of the SAR study on the C-6 position of pyrazolopyrimidine ring demonstrated that 6-(N-substituted-methyl)pyrazolopyrimidines 17b, 17d, and 19d possessed the significant IC50 inhibitory activity for the different leukemia cell lines, especially for Jurkat, K-562, and HL-60. On the other hand, further SAR inhibition and docking model studies revealed that compound 19d, which has a 3-(1H-imidazol-1-yl)propan-1-amino side-chain on the C-6 position, was able to form four hydrogen bonds with residues Ala226, Leu152, and Glu194 and specifically extended into the P1 pocket subsite with Aurora A, resulting in improved inhibitory activity almost similar to SNS-314. To explore the anti-cancer mechanism, compound 19d was measured by Western blot analysis in Jurkat T-cells, however, it showed non-responsibility to Aurora B. For the further structural modifications on the lateral chain of compound 19d, compounds 24 with longer lateral chain were designed and synthesized for testing leukemia cell lines. However, compounds 24 was significantly decrease inhibition potency against leukemia cell lines. Based on the in-vitro results, compounds 17b and 19d could be considered to be the best potential lead drug in our study for the development of new and effective therapies for leukemia treatment. On the other hand, the DHFR inhibition results indicated compound 19d possessed good inhibitory activity and better than the reported naphthalene derivative. Through further comparisons of the model superposition of three-dimensional (3D) conformations in DHFR, compound 19d presented a similar structural alignment to Methotrexate and the reported naphthalene derivative and led to similar drug-like functional relationships. As a results, compound 19d would be a potential DHFR inhibitor for anti-leukemia drug candidate.
Chung CY
,Li SM
,Zeng WZ
,Uramaru N
,Huang GJ
,Juang SH
,Wong FF
... -
《-》