Metabolic reprogramming in the food-borne pathogen Listeria monocytogenes as a critical defence against acid stress.
摘要:
The ability to sense and respond effectively to acidic stress is important for microorganisms to survive and proliferate in fluctuating environments. As specific metabolic activities can serve to buffer the cytoplasmic pH, microorganisms rewire their metabolism to favour these reactions and thereby mitigate acid stress. The orally acquired pathogen Listeria monocytogenes exploits alternative metabolic activities to overcome the acidic stress encountered in the human stomach or food products. In this minireview, we discuss the metabolic processes in L. monocytogenes that mitigate acid stress, with an emphasis on the proton-depleting reactions, including glutamate decarboxylation, arginine/agmatine deimination, and fermentative acetoin production. We also summarize the recent findings on regulatory mechanisms that control the expression of genes that are responsible for these metabolic activities, including the general stress response regulator SigB, arginine repressor ArgR, and the recently discovered RofA-like transcriptional regulatory GadR. We further discuss the importance of this metabolic reprogramming in the context of food products and within the host. Finally, we highlight some outstanding challenges in the field, including an understanding of acid-sensing mechanisms, the role of intraspecies heterogeneity in acid resistance, and how a fundamental understanding of acid stress response can be exploited for food formulation to improve food safety and reduce food waste.
收起
展开
DOI:
10.1093/femsle/fnae060
被引量:
年份:
2024


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(68)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无