-
Accuracy of routine laboratory tests to predict mortality and deterioration to severe or critical COVID-19 in people with SARS-CoV-2.
Identifying patients with COVID-19 disease who will deteriorate can be useful to assess whether they should receive intensive care, or whether they can be treated in a less intensive way or through outpatient care. In clinical care, routine laboratory markers, such as C-reactive protein, are used to assess a person's health status.
To assess the accuracy of routine blood-based laboratory tests to predict mortality and deterioration to severe or critical (from mild or moderate) COVID-19 in people with SARS-CoV-2.
On 25 August 2022, we searched the Cochrane COVID-19 Study Register, encompassing searches of various databases such as MEDLINE via PubMed, CENTRAL, Embase, medRxiv, and ClinicalTrials.gov. We did not apply any language restrictions.
We included studies of all designs that produced estimates of prognostic accuracy in participants who presented to outpatient services, or were admitted to general hospital wards with confirmed SARS-CoV-2 infection, and studies that were based on serum banks of samples from people. All routine blood-based laboratory tests performed during the first encounter were included. We included any reference standard used to define deterioration to severe or critical disease that was provided by the authors.
Two review authors independently extracted data from each included study, and independently assessed the methodological quality using the Quality Assessment of Prognostic Accuracy Studies tool. As studies reported different thresholds for the same test, we used the Hierarchical Summary Receiver Operator Curve model for meta-analyses to estimate summary curves in SAS 9.4. We estimated the sensitivity at points on the SROC curves that corresponded to the median and interquartile range boundaries of specificities in the included studies. Direct and indirect comparisons were exclusively conducted for biomarkers with an estimated sensitivity and 95% CI of ≥ 50% at a specificity of ≥ 50%. The relative diagnostic odds ratio was calculated as a summary of the relative accuracy of these biomarkers.
We identified a total of 64 studies, including 71,170 participants, of which 8169 participants died, and 4031 participants deteriorated to severe/critical condition. The studies assessed 53 different laboratory tests. For some tests, both increases and decreases relative to the normal range were included. There was important heterogeneity between tests and their cut-off values. None of the included studies had a low risk of bias or low concern for applicability for all domains. None of the tests included in this review demonstrated high sensitivity or specificity, or both. The five tests with summary sensitivity and specificity above 50% were: C-reactive protein increase, neutrophil-to-lymphocyte ratio increase, lymphocyte count decrease, d-dimer increase, and lactate dehydrogenase increase. Inflammation For mortality, summary sensitivity of a C-reactive protein increase was 76% (95% CI 73% to 79%) at median specificity, 59% (low-certainty evidence). For deterioration, summary sensitivity was 78% (95% CI 67% to 86%) at median specificity, 72% (very low-certainty evidence). For the combined outcome of mortality or deterioration, or both, summary sensitivity was 70% (95% CI 49% to 85%) at median specificity, 60% (very low-certainty evidence). For mortality, summary sensitivity of an increase in neutrophil-to-lymphocyte ratio was 69% (95% CI 66% to 72%) at median specificity, 63% (very low-certainty evidence). For deterioration, summary sensitivity was 75% (95% CI 59% to 87%) at median specificity, 71% (very low-certainty evidence). For mortality, summary sensitivity of a decrease in lymphocyte count was 67% (95% CI 56% to 77%) at median specificity, 61% (very low-certainty evidence). For deterioration, summary sensitivity of a decrease in lymphocyte count was 69% (95% CI 60% to 76%) at median specificity, 67% (very low-certainty evidence). For the combined outcome, summary sensitivity was 83% (95% CI 67% to 92%) at median specificity, 29% (very low-certainty evidence). For mortality, summary sensitivity of a lactate dehydrogenase increase was 82% (95% CI 66% to 91%) at median specificity, 60% (very low-certainty evidence). For deterioration, summary sensitivity of a lactate dehydrogenase increase was 79% (95% CI 76% to 82%) at median specificity, 66% (low-certainty evidence). For the combined outcome, summary sensitivity was 69% (95% CI 51% to 82%) at median specificity, 62% (very low-certainty evidence). Hypercoagulability For mortality, summary sensitivity of a d-dimer increase was 70% (95% CI 64% to 76%) at median specificity of 56% (very low-certainty evidence). For deterioration, summary sensitivity was 65% (95% CI 56% to 74%) at median specificity of 63% (very low-certainty evidence). For the combined outcome, summary sensitivity was 65% (95% CI 52% to 76%) at median specificity of 54% (very low-certainty evidence). To predict mortality, neutrophil-to-lymphocyte ratio increase had higher accuracy compared to d-dimer increase (RDOR (diagnostic Odds Ratio) 2.05, 95% CI 1.30 to 3.24), C-reactive protein increase (RDOR 2.64, 95% CI 2.09 to 3.33), and lymphocyte count decrease (RDOR 2.63, 95% CI 1.55 to 4.46). D-dimer increase had higher accuracy compared to lymphocyte count decrease (RDOR 1.49, 95% CI 1.23 to 1.80), C-reactive protein increase (RDOR 1.31, 95% CI 1.03 to 1.65), and lactate dehydrogenase increase (RDOR 1.42, 95% CI 1.05 to 1.90). Additionally, lactate dehydrogenase increase had higher accuracy compared to lymphocyte count decrease (RDOR 1.30, 95% CI 1.13 to 1.49). To predict deterioration to severe disease, C-reactive protein increase had higher accuracy compared to d-dimer increase (RDOR 1.76, 95% CI 1.25 to 2.50). The neutrophil-to-lymphocyte ratio increase had higher accuracy compared to d-dimer increase (RDOR 2.77, 95% CI 1.58 to 4.84). Lastly, lymphocyte count decrease had higher accuracy compared to d-dimer increase (RDOR 2.10, 95% CI 1.44 to 3.07) and lactate dehydrogenase increase (RDOR 2.22, 95% CI 1.52 to 3.26).
Laboratory tests, associated with hypercoagulability and hyperinflammatory response, were better at predicting severe disease and mortality in patients with SARS-CoV-2 compared to other laboratory tests. However, to safely rule out severe disease, tests should have high sensitivity (> 90%), and none of the identified laboratory tests met this criterion. In clinical practice, a more comprehensive assessment of a patient's health status is usually required by, for example, incorporating these laboratory tests into clinical prediction rules together with clinical symptoms, radiological findings, and patient's characteristics.
De Rop L
,Bos DA
,Stegeman I
,Holtman G
,Ochodo EA
,Spijker R
,Otieno JA
,Alkhlaileh F
,Deeks JJ
,Dinnes J
,Van den Bruel A
,McInnes MD
,Leeflang MM
,Cochrane COVID-19 Diagnostic Test Accuracy Group
,Verbakel JY
... -
《Cochrane Database of Systematic Reviews》
-
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Sample collection is a key driver of accuracy in the diagnosis of SARS-CoV-2 infection. Viral load may vary at different anatomical sampling sites and accuracy may be compromised by difficulties obtaining specimens and the expertise of the person taking the sample. It is important to optimise sampling accuracy within cost, safety and accessibility constraints.
To compare the sensitivity of different sampling collection sites and methods for the detection of current SARS-CoV-2 infection with any molecular or antigen-based test.
Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 22 February 2022. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions.
We included studies of symptomatic or asymptomatic people with suspected SARS-CoV-2 infection undergoing testing. We included studies of any design that compared results from different sample types (anatomical location, operator, collection device) collected from the same participant within a 24-hour period.
Within a sample pair, we defined a reference sample and an index sample collected from the same participant within the same clinical encounter (within 24 hours). Where the sample comparison was different anatomical sites, the reference standard was defined as a nasopharyngeal or combined naso/oropharyngeal sample collected into the same sample container and the index sample as the alternative anatomical site. Where the sample comparison was concerned with differences in the sample collection method from the same site, we defined the reference sample as that closest to standard practice for that sample type. Where the sample pair comparison was concerned with differences in personnel collecting the sample, the more skilled or experienced operator was considered the reference sample. Two review authors independently assessed the risk of bias and applicability concerns using the QUADAS-2 and QUADAS-C checklists, tailored to this review. We present estimates of the difference in the sensitivity (reference sample (%) minus index sample sensitivity (%)) in a pair and as an average across studies for each index sampling method using forest plots and tables. We examined heterogeneity between studies according to population (age, symptom status) and index sample (time post-symptom onset, operator expertise, use of transport medium) characteristics.
This review includes 106 studies reporting 154 evaluations and 60,523 sample pair comparisons, of which 11,045 had SARS-CoV-2 infection. Ninety evaluations were of saliva samples, 37 nasal, seven oropharyngeal, six gargle, six oral and four combined nasal/oropharyngeal samples. Four evaluations were of the effect of operator expertise on the accuracy of three different sample types. The majority of included evaluations (146) used molecular tests, of which 140 used RT-PCR (reverse transcription polymerase chain reaction). Eight evaluations were of nasal samples used with Ag-RDTs (rapid antigen tests). The majority of studies were conducted in Europe (35/106, 33%) or the USA (27%) and conducted in dedicated COVID-19 testing clinics or in ambulatory hospital settings (53%). Targeted screening or contact tracing accounted for only 4% of evaluations. Where reported, the majority of evaluations were of adults (91/154, 59%), 28 (18%) were in mixed populations with only seven (4%) in children. The median prevalence of confirmed SARS-CoV-2 was 23% (interquartile (IQR) 13%-40%). Risk of bias and applicability assessment were hampered by poor reporting in 77% and 65% of included studies, respectively. Risk of bias was low across all domains in only 3% of evaluations due to inappropriate inclusion or exclusion criteria, unclear recruitment, lack of blinding, nonrandomised sampling order or differences in testing kit within a sample pair. Sixty-eight percent of evaluation cohorts were judged as being at high or unclear applicability concern either due to inflation of the prevalence of SARS-CoV-2 infection in study populations by selectively including individuals with confirmed PCR-positive samples or because there was insufficient detail to allow replication of sample collection. When used with RT-PCR • There was no evidence of a difference in sensitivity between gargle and nasopharyngeal samples (on average -1 percentage points, 95% CI -5 to +2, based on 6 evaluations, 2138 sample pairs, of which 389 had SARS-CoV-2). • There was no evidence of a difference in sensitivity between saliva collection from the deep throat and nasopharyngeal samples (on average +10 percentage points, 95% CI -1 to +21, based on 2192 sample pairs, of which 730 had SARS-CoV-2). • There was evidence that saliva collection using spitting, drooling or salivating was on average -12 percentage points less sensitive (95% CI -16 to -8, based on 27,253 sample pairs, of which 4636 had SARS-CoV-2) compared to nasopharyngeal samples. We did not find any evidence of a difference in the sensitivity of saliva collected using spitting, drooling or salivating (sensitivity difference: range from -13 percentage points (spit) to -21 percentage points (salivate)). • Nasal samples (anterior and mid-turbinate collection combined) were, on average, 12 percentage points less sensitive compared to nasopharyngeal samples (95% CI -17 to -7), based on 9291 sample pairs, of which 1485 had SARS-CoV-2. We did not find any evidence of a difference in sensitivity between nasal samples collected from the mid-turbinates (3942 sample pairs) or from the anterior nares (8272 sample pairs). • There was evidence that oropharyngeal samples were, on average, 17 percentage points less sensitive than nasopharyngeal samples (95% CI -29 to -5), based on seven evaluations, 2522 sample pairs, of which 511 had SARS-CoV-2. A much smaller volume of evidence was available for combined nasal/oropharyngeal samples and oral samples. Age, symptom status and use of transport media do not appear to affect the sensitivity of saliva samples and nasal samples. When used with Ag-RDTs • There was no evidence of a difference in sensitivity between nasal samples compared to nasopharyngeal samples (sensitivity, on average, 0 percentage points -0.2 to +0.2, based on 3688 sample pairs, of which 535 had SARS-CoV-2).
When used with RT-PCR, there is no evidence for a difference in sensitivity of self-collected gargle or deep-throat saliva samples compared to nasopharyngeal samples collected by healthcare workers when used with RT-PCR. Use of these alternative, self-collected sample types has the potential to reduce cost and discomfort and improve the safety of sampling by reducing risk of transmission from aerosol spread which occurs as a result of coughing and gagging during the nasopharyngeal or oropharyngeal sample collection procedure. This may, in turn, improve access to and uptake of testing. Other types of saliva, nasal, oral and oropharyngeal samples are, on average, less sensitive compared to healthcare worker-collected nasopharyngeal samples, and it is unlikely that sensitivities of this magnitude would be acceptable for confirmation of SARS-CoV-2 infection with RT-PCR. When used with Ag-RDTs, there is no evidence of a difference in sensitivity between nasal samples and healthcare worker-collected nasopharyngeal samples for detecting SARS-CoV-2. The implications of this for self-testing are unclear as evaluations did not report whether nasal samples were self-collected or collected by healthcare workers. Further research is needed in asymptomatic individuals, children and in Ag-RDTs, and to investigate the effect of operator expertise on accuracy. Quality assessment of the evidence base underpinning these conclusions was restricted by poor reporting. There is a need for further high-quality studies, adhering to reporting standards for test accuracy studies.
Davenport C
,Arevalo-Rodriguez I
,Mateos-Haro M
,Berhane S
,Dinnes J
,Spijker R
,Buitrago-Garcia D
,Ciapponi A
,Takwoingi Y
,Deeks JJ
,Emperador D
,Leeflang MMG
,Van den Bruel A
,Cochrane COVID-19 Diagnostic Test Accuracy Group
... -
《Cochrane Database of Systematic Reviews》
-
Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
《Jove-Journal of Visualized Experiments》
-
Antibody tests for identification of current and past infection with SARS-CoV-2.
The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology.
To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases.
The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions.
We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples).
We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria.
We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection.
Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Fox T
,Geppert J
,Dinnes J
,Scandrett K
,Bigio J
,Sulis G
,Hettiarachchi D
,Mathangasinghe Y
,Weeratunga P
,Wickramasinghe D
,Bergman H
,Buckley BS
,Probyn K
,Sguassero Y
,Davenport C
,Cunningham J
,Dittrich S
,Emperador D
,Hooft L
,Leeflang MM
,McInnes MD
,Spijker R
,Struyf T
,Van den Bruel A
,Verbakel JY
,Takwoingi Y
,Taylor-Phillips S
,Deeks JJ
,Cochrane COVID-19 Diagnostic Test Accuracy Group
... -
《Cochrane Database of Systematic Reviews》
-
Defining the optimum strategy for identifying adults and children with coeliac disease: systematic review and economic modelling.
Elwenspoek MM
,Thom H
,Sheppard AL
,Keeney E
,O'Donnell R
,Jackson J
,Roadevin C
,Dawson S
,Lane D
,Stubbs J
,Everitt H
,Watson JC
,Hay AD
,Gillett P
,Robins G
,Jones HE
,Mallett S
,Whiting PF
... -
《-》