Seasonal drought treatments impact plant and microbial uptake of nitrogen in a mixed shrub grassland on the Colorado Plateau.

来自 PUBMED

作者:

Finger-Higgens RHoover DLKnight ACWilson SLBishop TBBReibold RReed SCDuniway MC

展开

摘要:

For many drylands, both long- and short-term drought conditions can accentuate landscape heterogeneity at both temporal (e.g., role of seasonal patterns) and spatial (e.g., patchy plant cover) scales. Furthermore, short-term drought conditions occurring over one season can exacerbate long-term, multidecadal droughts or aridification, by limiting soil water recharge, decreasing plant growth, and altering biogeochemical cycles. Here, we examine how experimentally altered seasonal precipitation regimes in a mixed shrub grassland on the Colorado Plateau impact soil moisture, vegetation, and carbon and nitrogen cycling. The experiment was conducted from 2015 to 2019, during a regional multidecadal drought event, and consisted of three precipitation treatments, which were implemented with removable drought shelters intercepting ~66% of incoming precipitation including: control (ambient precipitation conditions, no shelter), warm season drought (sheltered April-October), and cool season drought (sheltered November-March). To track changes in vegetation, we measured biomass of the dominant shrub, Ephedra viridis, and estimated perennial plant and ground cover in the spring and the fall. Soil moisture dynamics suggested that warm season experimental drought had longer and more consistent drought legacy effects (occurring two out of the four drought cycles) than either cool season drought or ambient conditions, even during the driest years. We also found that E. viridis biomass remained consistent across treatments, while bunchgrass cover declined by 25% by 2019 across all treatments, with the earliest declines noticeable in the warm season drought plots. Extractable dissolved inorganic nitrogen and microbial biomass nitrogen concentrations appeared sensitive to seasonal drought conditions, with dissolved inorganic nitrogen increasing and microbial biomass nitrogen decreasing with reduced soil volumetric water content. Carbon stocks were not sensitive to drought but were greater under E. viridis patches. Additionally, we found that under E. viridis, there was a negative relationship between dissolved inorganic nitrogen and microbial biomass nitrogen, suggesting that drought-induced increases in dissolved inorganic nitrogen may be due to declines in nitrogen uptake from microbes and plants alike. This work suggests that perennial grass plant-soil feedbacks are more vulnerable to both short-term (seasonal) and long-term (multiyear) drought events than shrubs, which can impact the future trajectory of dryland mixed shrub grassland ecosystems as drought frequency and intensity will likely continue to increase with ongoing climate change.

收起

展开

DOI:

10.1002/ecy.4393

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(129)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读