Adolescent exposure to bisphenol-a antagonizes androgen regulation of social behavior in male mice.
摘要:
Social behavior is sexually dimorphic, which is regulated by gonadal hormones in the brain. Our recent study found that exposure to low doses of bisphenol-A (BPA) during adolescence, permanently alters social behavior in adult male mice, but the underlying mechanisms remain unclear. Using adolescent gonadectomy (GDX) male mice with testosterone propionate (TP, 0.5 mg/kg) supplement (TP-GDX), this study showed that BPA antagonized promoting effects of TP on social interaction, sexual behavior, and aggression in GDX mice. BPA eliminated the reversal effects of TP on GDX-induced decrease in the number of immunoreactive to arginine vasopressin (AVP-ir) neurons in the medial amygdala (MeA) and the levels of AVP receptor 1a (V1aR) in the MeA and the nucleus accumbens (NAc). In addition, BPA removed down-regulation in the levels of dopamine (DA) transporter (DAT) and DA receptor 1 (DR1) in the NAc of TP-GDX mice. BPA exposure reduced testosterone (T) levels in the brain and serum and the expression of androgen receptor (AR) protein in the amygdala and striatum of sham-operated and TP-GDX males. These results suggest that adolescent exposure to BPA inhibits regulation of androgen in AVP and DA systems of the brain regions associated with social behavior, and thus alters social behaviors of adult male mice.
收起
展开
DOI:
10.1016/j.ntt.2024.107374
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(102)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无