-
The immunotherapy mechanism of Hedyotis Diffusae Herba in treating liver cancer: a study based on network pharmacology, bioinformatics, and experimental validation.
Liver cancer is a malignant tumor that develops on or inside the liver. Hedyotis diffusa Willd (HDW) plays a significant role in anti-tumor activities; however, its mechanism against liver cancer remains unclear. This study aims to evaluate the immunotherapeutic mechanism of HDW in treating liver cancer through network pharmacology, bioinformatics analysis, and experimental validation. Network pharmacology was utilized to identify the active components and potential targets of HDW from the TCMSP database. A potential target protein-protein interaction (PPI) network was constructed using the STRING database, followed by function and pathway enrichment analysis of the targets using GO and KEGG methods. In addition, the key targets for HDW against liver cancer were identified using five different algorithms in Cytoscape. The TCGA and HPA databases were used to assess the mRNA and protein expression of core target genes in normal liver and liver cancer tissues and their relationship with overall survival in liver cancer, as well as their role in immune infiltration. Molecular docking between the core components of HDW and the core targets was performed using PyMOL software. The effects of HDW on the proliferation and apoptosis of liver cancer cells were examined using MTT and flow cytometry. The regulatory effects of the core component quercetin on core targets were validated using RT-qPCR and Western blot. A total of 163 potential targets were identified by searching for intersections among 7 types of active components and all potential and liver cancer targets. PPI network analysis revealed the core targets IL6 and TNF. GO enrichment analysis involved 2089 biological processes, 76 cellular components, and 196 molecular functions. KEGG enrichment analysis suggested that the anti-cancer effects of HDW might be mediated by the AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, and NF-κB signaling pathway. Database validation of key targets showed that mRNA and protein expression results for the IL6 gene were contradictory, while those for the TNF gene were consistent, both being underexpressed in liver cancer. Importantly, the expression of IL6 and TNF was related to the infiltration of 24 types of immune cells, with the highest correlation with macrophages. Molecular docking showed that IL6 and TNF had high binding stability with quercetin, with binding energies of - 7.4 and - 6.0 kJ∙mol-1, respectively. Experimental validation showed that quercetin inhibited liver cancer cell proliferation and promoted apoptosis in a dose-dependent manner, with protein results indicating that quercetin downregulated the mRNA and protein expression of IL6 and TNF, and upregulated key proteins in the AGE-RAGE signaling pathway, AGEs, and RAGE. This study comprehensively elucidates the activity, potential targets, and molecular mechanisms of HDW against liver cancer, providing a promising strategy for the scientific basis and treatment mechanism of traditional Chinese medicine in treating liver cancer.
Zheng Q
,Wu X
,Peng S
《-》
-
Investigation of Scutellaria Barbata's immunological mechanism against thyroid cancer using network pharmacology and experimental validation.
Thyroid cancer (TC) is the most common endocrine malignancy, with a rapidly increasing global incidence. Scutellariae Barbatae Herba (SBH) exhibits significant antitumor activity; however, its mechanism against TC remains unclear. This study aims to explore the immunotherapeutic mechanism of SBH in treating TC through network pharmacology, bioinformatics analysis, and experimental validation. In the TCMSP database, the active components and potential targets of SBH were screened to construct a drug-component-target-disease network. TC targets were then filtered, and common targets were selected to build a protein-protein interaction network. GO and KEGG enrichment analyses were performed. The expression, prognosis, and immunotherapeutic roles of core genes were validated using TCGA databases. Molecular docking demonstrated the binding interactions between core components and targets. Finally, in vitro experiments were conducted to validate the results of the network pharmacology analysis. 14 active components and 29 potential targets of SBH in treating TC were identified from the TCMSP database. PPI network analysis highlighted SPP1 as a key target. GO enrichment analysis involved 722 biological processes, 24 cellular components, and 73 molecular functions. KEGG enrichment analysis suggested that the anticancer effect of SBH might be mediated through signaling pathways such as AGE-RAGE and PI3K-Akt. TCGA data indicated that SPP1 is highly expressed in TC and is associated with diagnosis, pathological stage, N stage, and gender of TC patients. Additionally, SPP1 expression correlated with the infiltration of 24 types of immune cells, with the highest correlation observed with macrophages. Molecular docking demonstrated that SPP1 has high binding stability with quercetin, Rhamnazin, and Salvigenin, with binding energies of -8.117, -7.494, and - 7.202 kJ∙mol - 1, respectively. Experimental validation showed that quercetin inhibited the growth of TC cells in a dose-dependent manner. Protein results indicated that quercetin downregulated SPP1 mRNA and protein expression. This study combines database predictions with experimental validation to reveal the potential mechanisms of SBH against TC, providing effective strategies for the immunotherapy of TC.
Ouyang G
,Zhu Y
,Ouyang Z
《Scientific Reports》
-
Mechanism of Si Ni San Combined with Astragalus in Treating Hepatic Fibrosis: A Network Pharmacology and Molecular Docking Study.
Si Ni San combined with Astragalus (SNSQ) has demonstrated significant efficacy in the treatment of hepatic fibrosis (HF), as confirmed by clinical practice. However, its pharmacological mechanism remains unclear. This study employs network pharmacology to identify key targets and proteins for molecular docking. Additionally, animal experiments were conducted to validate the network pharmacology results, providing further insights into the mechanism of SNSQ in treating HF. Effective compounds of SNSQ were screened from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Encyclopedia of Traditional Chinese Medicine (ETCM) databases. Molecular formula structures of these effective compounds were obtained from the PubChem database. Partial target proteins with a probability greater than 0.6 were sourced from the SWISS database. Uniprot IDs corresponding to these target proteins were retrieved from the SUPERPRED database. The remaining target proteins of the compounds were obtained from the Uniprot database based on the Uniprot IDs. The drug target proteins were then summarized. Target points related to HF were selected from the GeneCards and OMIM databases. Common target points were identified in the Venn diagram and imported into Cytoscape 3.9.1 software to construct the "SNSQ-effective compound-target pathway-HF" network. AutoDock software was used for molecular docking of compounds and target proteins with high-degree values. The common target points underwent GO function enrichment and KEGG pathway enrichment analysis using the DAVID database. An HF rat model was established, and serum AST and ALT activities were measured. The Hyp assay kit was utilized to detect the Hyp content in liver tissue. To the transcription levels of pro-inflammatory factors (IL-1β, TNF-α, IL-6) and anti-inflammatory factors (IL-10, TGF-β1, IL-4) in rat serum and liver.IL-1β, TNF-α, IL-10, and TGF-β1 were chosen for validation through ELISA. Western blotting and qRT-PCR were used to assess the expression of related proteins, namely NFKB1, NF-κBp65, NF-κBp50, α-SMA, and Col-1 in liver tissue. qRT-PCR was also employed to study the expression of ECM synthesis and proliferation-related genes, including Cyclin D1, TIMP1, COL1A1 in HSC-T6 cells and rat liver tissue, as well as the inhibition of the ECM-related gene MMP13 in HSC-T6 cells and rat liver tissue. A total of 16 valid compounds were predicted, with kaempferol, sitosterol, and isorhamnetin exhibiting high-degree values. KEGG enrichment analysis revealed that the target genes of SNSQ were enriched in multiple pathological pathways, with the NF-Kappa B signaling pathway being predominant. Molecular docking simulations indicated strong affinities between SNSQ's primary components-kaempferol, sitosterol, isorhamnetin-and NFKB1. Experimental results demonstrated significant reductions in AST, ALT, and Hyp levels in the SNSQ group. Pro-inflammatory factors (IL-1β, TNF-ɑ) were markedly reduced, while anti-inflammatory factors (IL-10, TGF-β1) were substantially increased. The protein expression and transcription levels of α-SMA and Col-1 were significantly decreased, whereas those of NFKB1, NF-κBp65, and NF-κBp50 were notably elevated. mRNA expression levels of Cyclin D1, TIMP1, COL1A1 in HSC-T6 cells and rat liver tissue were significantly decreased, whereas MMP13 mRNA expression level was significantly increased. Treatment of HF with SNSQ involves multiple targets and pathways, with a close association with the overexpression of NFKB1 and activation of the NF-Kappa B signaling pathway. Its mechanism is closely linked to the activation of inflammatory responses, HSC activation, and proliferation.
Jin J
,Yu J
,Zhai C
,Li H
,Chen Z
,Bao LD
... -
《-》
-
Based on network pharmacology, molecular docking and experimental verification to reveal the mechanism of Andrographis paniculata against solar dermatitis.
Solar dermatitis (SD) is an acute, damaging inflammation of the skin caused by UV exposure, especially UVB. Therefore, the discovery of novel anti-SD therapeutic agents is crucial. Andrographis paniculata (AP) is a medicinal plant with a wide range of pharmacological effects. Increased evidence shows that AP has potential therapeutic effects on SD. However, the therapeutic mechanisms of AP against SD have not yet been completely elucidated, which is an unexplored field.
This study employed network pharmacology, molecular docking and experimental verification to ascertain the active constituents, possible targets, and biological pathways associated with AP in the treatment of SD.
AP-related active ingredients and their potential targets were screened from TCMSP and Swiss Target Prediction database, respectively. Potential therapeutic targets of SD were collected using the GeneCards, DrugBank and OMIM databases. Then, we established protein-protein interaction (PPI), compound-target-disease (D-C-T-D) through Cytoscape to identify the major components, core targets of AP against SD. Next, the GO and KEGG pathway was identified by the David database of AP in the treatment of SD. Molecular docking techniques were used to estimate the binding force between the components and the hub genes. In this paper, we used UVB-irradiated HaCaT keratinocytes as an in vitro model and established the dorsal skin of UVB-irradiated ICR mice as an in vivo model to explore the mechanism for further verification.
There were 24 active components and 63 related target genes in AP against SD. PPI analysis showed that AKT-1, TNF-α, IL6, MMP9, EGFR, and PTGS2 shared the highest centrality among all target genes. KEGG pathway analysis revealed that the PI3K-Akt signaling pathway may be central in the anti-SD system. The molecular docking results showed that the main active components of AP have strong binding affinity with hub genes. In vitro results showed that WG had a protective effect on UVB-intervened HaCat cells. Western blot analysis showed that WG intervention achieved anti-inflammation by reducing the phosphorylated expression of AKT, PI3K proteins in the PI3K-AKT signaling pathway and downregulating the expression of TNF-α, IL-6, EGFR. Furthermore, Histological analysis confirmed that administration of WG to ICR mice significantly ameliorated UVB-induced skin roughness, epidermal thickening, disturbed collagen fiber alignment and wrinkles. Meanwhile, immunohistochemistry showed that administration of WG to ICR mice significantly reduced UVB-induced expression of MMP9, MPO, F4/80 in the skin. These results provide new insights into the contribution of WG to the development of clinical treatment modalities for UVB-induced SD.
The crucial element in the fight against SD is WG, with the primary route being PI3K/Akt. The main components and hub genes had robust binding abilities. In vitro and vivo experiments showed that WG could inhibit the expression level of the hub genes by inhibiting the PI3K/Akt pathway. In summary, the information presented in this study indicates that WG might be utilised as a treatment for UVB-induced SD.
Deng Q
,Chen W
,Deng B
,Chen W
,Chen L
,Fan G
,Wu J
,Gao Y
,Chen X
... -
《-》
-
Mechanism of Hedyotis diffusa-Scutellaria barbata D. Don for treatment of primary liver cancer: analysis with network pharmacology, molecular docking and in vitro validation.
Xu M
,Chen L
,Wu J
,Liu L
,Shi M
,Zhou H
,Zhang G
... -
《-》