-
IgG subclass shifts occurring at acute exacerbations in autoimmune nodopathies.
Autoimmune nodopathy associated with anti-contactin1 (CNTN1) IgG4 antibodies frequently manifests as acute axonal degeneration in addition to detachment of the paranodal myelin loops. The acute destruction of myelinated nerve fibers does not match the function of IgG4, which cannot activate the complement pathway. IgG subclass switching from IgG1 or IgG3 to IgG4 has been observed in some patients with autoimmune diseases associated with IgG4 throughout their disease course.
Serial changes in IgG subclasses, clinico-neurophysiological features, and nerve and renal pathology were reviewed in three patients with anti-CNTN1-associated autoimmune nodopathy and one patient with anti-contactin-associated protein1 (Caspr1) autoimmune nodopathy.
All four patients had predominantly IgG4 autoantibodies, whereas they showed evidence of acute axonal degeneration. The IgG1 subclass was present in all patients at their progressing stage but then disappeared at follow-up. Nerve pathology in the patients with anti-CNTN1 and anti-Caspr1 autoimmune nodopathies showed both structural changes in the paranodes and evidence of acute axonal degeneration. Renal biopsy specimens from two patients with membranous glomerulonephritis and anti-CNTN1 autoimmune nodopathy showed deposition of IgG1 and complement on the glomerular basement membrane, as well as IgG4.
In patients with autoimmune nodopathies associated with anti-CNTN1 and anti-Caspr1 IgG4 antibodies, IgG1 subclass autoantibodies were present at their acute exacerbations and might have contributed to the axonal degeneration and glomerular injury. IgG1 disappeared with the cessation of disease progression, which indicates that the IgG1 subclass is a possible biomarker of disease activity.
Kokubun N
,Tsuchiya T
,Hamaguchi M
,Ueda Y
,Matsuda H
,Ishida K
,Funakoshi K
,Suzuki K
,Yuki N
... -
《-》
-
Proteinuria is a key to suspect autoimmune nodopathies.
Reports of patients who have autoimmune nodopathies concurrent with nephrotic syndrome are increasing. We investigated whether proteinuria could be a biomarker of autoimmune nodopathies.
Qualitative urinalysis results were retrospectively obtained from 69 patients who were diagnosed with chronic inflammatory demyelinating polyneuropathy (CIDP) at a hospital in Japan. Proteinuria was graded as mild to severe (i.e., mild, 30-99; moderate, 100-299; severe, 300 mg/dL or more) according to the results of the urine dipstick test. Autoantibodies against the paranodal proteins contactin 1 (CNTN1), neurofascin 155 (NF155), and contactin-associated protein 1 (Caspr1) and the nodal protein neurofascin 186 (NF186) were measured, and the predominant IgG subclass was determined by enzyme-linked immunosorbent assay in sera from the 69 patients.
Four patients (6%), five patients (7%), and one (1%) patient were positive for anti-CNTN1, anti-NF155, and anti-Caspr1 IgG4 antibodies, respectively. No patients had IgG4 antibodies against NF186. Proteinuria of mild or greater levels was found in three patients with anti-CNTN1 IgG4 and two patients with anti-NF155 IgG4 antibodies. The autoantibody-positive patients more frequently had proteinuria of mild or greater levels than the seronegative patients (p = 0.01).
Proteinuria is a possible biomarker of autoimmune nodopathies associated with autoantibodies targeting CNTN1 or NF155. Urinalysis results should be carefully checked for quick differentiation of autoimmune nodopathies from CIDP. Patients who present with nephrotic syndrome should be tested for anti-CNTN1 IgG4 antibodies, and patients who exhibit mild proteinuria should be tested for anti-NF155 IgG4 antibodies.
Funakoshi K
,Kokubun N
,Suzuki K
,Yuki N
... -
《-》
-
Antibodies to the Caspr1/contactin-1 complex in chronic inflammatory demyelinating polyradiculoneuropathy.
Previous studies have described the clinical, serological and pathological features of patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and antibodies directed against the paranodal proteins neurofascin-155, contactin-1 (CNTN1), contactin-associated protein-1 (Caspr1), or nodal forms of neurofascin. Such antibodies are useful for diagnosis and potentially treatment selection. However, antibodies targeting Caspr1 only or the Caspr1/CNTN1 complex have been reported in few patients with CIDP. Moreover, it is unclear if these patients belong to the same pathophysiological subgroup. Using cell-based assays in routine clinical testing, we identified sera from patients with CIDP showing strong membrane reactivity when both CNTN1 and Caspr1 were co-transfected (but not when CNTN1 was transfected alone). Fifteen patients (10 male; aged between 40 and 75) with antibodies targeting Caspr1/CNTN1 co-transfected cells were enrolled for characterization. The prevalence of anti-Caspr1/CNTN1 antibodies was 1.9% (1/52) in the Sant Pau CIDP cohort, and 4.3% (1/23) in a German cohort of acute-onset CIDP. All patients fulfilled European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) definite diagnostic criteria for CIDP. Seven (47%) were initially diagnosed with Guillain-Barré syndrome due to an acute-subacute onset. Six (40%) patients had cranial nerve involvement, eight (53%) reported neuropathic pain and 12 (80%) ataxia. Axonal involvement and acute denervation were frequent in electrophysiological studies. Complete response to intravenous immunoglobulin was not observed, while most (90%) responded well to rituximab. Enzyme-linked immunosorbent assay (ELISA) and teased nerve fibre immunohistochemistry confirmed reactivity against the paranodal Caspr1/CNTN1 complex. Weaker reactivity against Caspr1 transfected alone was also detected in 10/15 (67%). Sera from 13 of these patients were available for testing by ELISA. All 13 samples reacted against Caspr1 by ELISA and this reactivity was enhanced when CNTN1 was added to the Caspr1 ELISA. IgG subclasses were also investigated by ELISA. IgG4 was the predominant subclass in 10 patients, while IgG3 was predominant in other three patients. In conclusion, patients with antibodies to the Caspr1/CNTN1 complex display similar serological and clinical features and constitute a single subgroup within the CIDP syndrome. These antibodies likely target Caspr1 primarily and are detected with Caspr1-only ELISA, but reactivity is optimal when CNTN1 is added to Caspr1 in cell-based assays and ELISA.
Pascual-Goñi E
,Fehmi J
,Lleixà C
,Martín-Aguilar L
,Devaux J
,Höftberger R
,Delmont E
,Doppler K
,Sommer C
,Radunovic A
,Carvajal A
,Smyth S
,Williams L
,Mazanec R
,Potočková V
,Hinds N
,Cassereau J
,Viala K
,Lefilliatre M
,Nicolas G
,Foley P
,Leypoldt F
,Keddie S
,Lunn MP
,Zimprich F
,Nunkoo VS
,Löscher WN
,Martínez-Martínez L
,Díaz-Manera J
,Rojas-Garcia R
,Illa I
,Rinaldi S
,Querol L
... -
《-》
-
Characteristics of Anti-Contactin1 Antibody-Associated Autoimmune Nodopathies With Concomitant Membranous Nephropathy.
The concurrence of anti-contactin 1 (CNTN1) antibody-associated chronic inflammatory demyelinating polyneuropathy (CIDP) and membranous nephropathy (MN) has previously been reported in the literature. CIDP with autoantibodies against paranodal proteins are defined as autoimmune nodopathies (AN) in the latest research. In view of the unclear relationship between CIDP and MN, we performed a case study and literature review to investigate the clinical characteristics of anti-CNTN antibody-associated AN with MN.
We detected antibodies against NF155, NF186, CNTN1, CNTN2, CASPR1 and PLA2R in blood samples of a patient with clinically manifested MN and concomitant peripheral neuropathy via double immunofluorescence staining and conducted a quantitative measurement of anti-PLA2R IgG antibodies via enzyme-linked immunosorbent assay (ELISA). Case reports of anti-CNTN1 antibody-associated AN, anti-CNTN1 antibody-associated AN with MN, and CIDP with MN were retrieved through a literature search for a comparative analysis of clinical characteristics. The cases were grouped according to the chronological order of CIDP and MN onset for the comparison of clinical characteristics.
A 57-year-old man with anti-PLA2R positive MN was admitted to the hospital due to limb numbness, weakness, and proprioceptive sensory disorder. He was diagnosed with anti-CNTN1 antibody-associated AN and recovered well after immunotherapy. Our literature search returned 22 cases of CIDP with MN that occurred before, after, or concurrently with CIDP. Good responses were achieved with early single-agent or combination immunotherapy, but eight out of the 22 patients with CIDP and concomitant MN ultimately developed different motor sequelae. Five patients had anti-CNTN1 antibody-associated AN with MN. Among these patients, males accounted for the majority of cases (male:female=4:1), the mean age at onset was late (60.2 ± 15.7 years, range 43-78 years), and 40% had acute to subacute onset. Clinical manifestations included sensory-motor neuropathy, sensory ataxia caused by proprioceptive impairment, and elevated cerebrospinal fluid protein levels.
The age at onset of CIDP with MN was earlier than that of anti-CNTN1 antibody-associated AN. MN may occur before, after or concurrently with CIDP. The early detection and isotyping of anti-CNTN1 and anti-PLA2R antibodies and the monitoring of isotype switching may be essential for suspected CIDP patients.
Xu Q
,Liu S
,Zhang P
,Wang Z
,Chang X
,Liu Y
,Yan J
,He R
,Luo X
,Zou LY
,Chu X
,Guo Y
,Huang S
,Fu X
,Huang Y
... -
《Frontiers in Immunology》
-
Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: Clinical relevance of IgG isotype.
To assess the prevalence and isotypes of anti-nodal/paranodal antibodies to nodal/paranodal proteins in a large chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) cohort, compare clinical features in seronegative vs seropositive patients, and gather evidence of their isotype-specific pathogenic role.
Antibodies to neurofascin-155 (Nfasc155), neurofascin-140/186 (Nfasc140/186), contactin-1 (CNTN1), and contactin-associated protein 1 (Caspr1) were detected with ELISA and/or cell-based assay. Antibody pathogenicity was tested by immunohistochemistry on skin biopsy, intraneural injection, and cell aggregation assay.
Of 342 patients with CIDP, 19 (5.5%) had antibodies against Nfasc155 (n = 9), Nfasc140/186 and Nfasc155 (n = 1), CNTN1 (n = 3), and Caspr1 (n = 6). Antibodies were absent from healthy and disease controls, including neuropathies of different causes, and were mostly detected in patients with European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) definite CIDP (n = 18). Predominant antibody isotypes were immunoglobulin G (IgG)4 (n = 13), IgG3 (n = 2), IgG1 (n = 2), or undetectable (n = 2). IgG4 antibody-associated phenotypes included onset before 30 years, severe neuropathy, subacute onset, tremor, sensory ataxia, and poor response to intravenous immunoglobulin (IVIG). Immunosuppressive treatments, including rituximab, cyclophosphamide, and methotrexate, proved effective if started early in IVIG-resistant IgG4-seropositive cases. Five patients with an IgG1, IgG3, or undetectable isotype showed clinical features indistinguishable from seronegative patients, including good response to IVIG. IgG4 autoantibodies were associated with morphological changes at paranodes in patients' skin biopsies. We also provided preliminary evidence from a single patient about the pathogenicity of anti-Caspr1 IgG4, showing their ability to penetrate paranodal regions and disrupt the integrity of the Nfasc155/CNTN1/Caspr1 complex.
Our findings confirm previous data on the tight clinico-serological correlation between antibodies to nodal/paranodal proteins and CIDP. Despite the low prevalence, testing for their presence and isotype could ultimately be part of the diagnostic workup in suspected inflammatory demyelinating neuropathy to improve diagnostic accuracy and guide treatment.
This study provides Class III evidence that antibodies to nodal/paranodal proteins identify patients with CIDP (sensitivity 6%, specificity 100%).
Cortese A
,Lombardi R
,Briani C
,Callegari I
,Benedetti L
,Manganelli F
,Luigetti M
,Ferrari S
,Clerici AM
,Marfia GA
,Rigamonti A
,Carpo M
,Fazio R
,Corbo M
,Mazzeo A
,Giannini F
,Cosentino G
,Zardini E
,Currò R
,Gastaldi M
,Vegezzi E
,Alfonsi E
,Berardinelli A
,Kouton L
,Manso C
,Giannotta C
,Doneddu P
,Dacci P
,Piccolo L
,Ruiz M
,Salvalaggio A
,De Michelis C
,Spina E
,Topa A
,Bisogni G
,Romano A
,Mariotto S
,Mataluni G
,Cerri F
,Stancanelli C
,Sabatelli M
,Schenone A
,Marchioni E
,Lauria G
,Nobile-Orazio E
,Devaux J
,Franciotta D
... -
《Neurology-Neuroimmunology & Neuroinflammation》