Neuregulin 4 Attenuates Podocyte Injury and Proteinuria in Part by Activating AMPK/mTOR-Mediated Autophagy in Mice.

来自 PUBMED

作者:

Deng JYang QZhu WZhang YLin MShe JLi JXiao YXiao JXu XHe HZhu BDing Y

展开

摘要:

In this study, we investigate the effect of neuregulin 4 (NRG4) on podocyte damage in a mouse model of diabetic nephropathy (DN) and we elucidate the underlying molecular mechanisms. In vivo experiments were conducted using a C57BL/6 mouse model of DN to determine the effect of NRG4 on proteinuria and podocyte injury, and in vitro experiments were performed with conditionally immortalized mouse podocytes treated with high glucose and NRG4 to assess the protective effects of NRG4 on podocyte injury. Autophagy-related protein levels and related signaling pathways were evaluated both in vivo and in vitro. The involvement of the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was detected using chloroquine or AMPK inhibitors. The results showed that the AMPK/mTOR pathway was involved in the protective roles of NRG4 against high glucose-mediated podocyte injury. Also, NRG4 significantly decreased albuminuria in DN mice. PAS staining indicated that NRG4 mitigated glomerular volume and mesangium expansion in DN mice. Consistently, western blot and RT-PCR analyses confirmed that NRG4 decreased the expression of pro-fibrotic molecules in the glomeruli of DN mice. The immunofluorescence results showed that NRG4 retained expression of podocin and nephrin, whereas transmission electron microscopy revealed that NRG4 alleviated podocyte injury. In DN mice, NRG4 decreased podocyte apoptosis and increased expression of nephrin and podocin, while decreasing the expression of desmin and HIF1α. Overall, NRG4 improved albuminuria, glomerulosclerosis, glomerulomegaly, and hypoxia in DN mice. The in vitro experiments showed that NRG4 inhibited HG-induced podocyte injury and apoptosis. Furthermore, autophagy of the glomeruli decreased in DN mice, but reactivated following NRG4 intervention. NRG4 intervention was found to partially activate autophagy via the AMPK/mTOR signaling pathway. Consequently, when the AMPK/mTOR pathway was suppressed or autophagy was inhibited, the beneficial effects of NRG4 intervention on podocyte injury were diminished. These results indicate that NRG4 intervention attenuates podocyte injury and apoptosis by promoting autophagy in the kidneys of DN mice, in part, by activating the AMPK/mTOR signaling pathway.

收起

展开

DOI:

10.1002/jcb.30634

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读