-
Systems biology-based analysis exploring shared biomarkers and pathogenesis of myocardial infarction combined with osteoarthritis.
More and more evidence supports the association between myocardial infarction (MI) and osteoarthritis (OA). The purpose of this study is to explore the shared biomarkers and pathogenesis of MI complicated with OA by systems biology.
Gene expression profiles of MI and OA were downloaded from the Gene Expression Omnibus (GEO) database. The Weighted Gene Co-Expression Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to identify the common DEGs. The shared genes related to diseases were screened by three public databases, and the protein-protein interaction (PPI) network was built. GO and KEGG enrichment analyses were performed on the two parts of the genes respectively. The hub genes were intersected and verified by Least absolute shrinkage and selection operator (LASSO) analysis, receiver operating characteristic (ROC) curves, and single-cell RNA sequencing analysis. Finally, the hub genes differentially expressed in primary cardiomyocytes and chondrocytes were verified by RT-qPCR. The immune cell infiltration analysis, subtypes analysis, and transcription factors (TFs) prediction were carried out.
In this study, 23 common DEGs were obtained by WGCNA and DEGs analysis. In addition, 199 common genes were acquired from three public databases by PPI. Inflammation and immunity may be the common pathogenic mechanisms, and the MAPK signaling pathway may play a key role in both disorders. DUSP1, FOS, and THBS1 were identified as shared biomarkers, which is entirely consistent with the results of single-cell RNA sequencing analysis, and furher confirmed by RT-qPCR. Immune infiltration analysis illustrated that many types of immune cells were closely associated with MI and OA. Two potential subtypes were identified in both datasets. Furthermore, FOXC1 may be the crucial TF, and the relationship of TFs-hub genes-immune cells was visualized by the Sankey diagram, which could help discover the pathogenesis between MI and OA.
In summary, this study first revealed 3 (DUSP1, FOS, and THBS1) novel shared biomarkers and signaling pathways underlying both MI and OA. Additionally, immune cells and key TFs related to 3 hub genes were examined to further clarify the regulation mechanism. Our study provides new insights into shared molecular mechanisms between MI and OA.
Luo Y
,Liu Y
,Xue W
,He W
,Lv D
,Zhao H
... -
《Frontiers in Immunology》
-
Unveiling the bioinformatic genes and their involved regulatory mechanisms in type 2 diabetes combined with osteoarthritis.
Type 2 Diabetes Mellitus (T2D) and Osteoarthritis (OA) are both prevalent diseases that significantly impact the health of patients. Increasing evidence suggests that there is a big correlation between T2D and OA, but the molecular mechanisms remain elusive. The aims of this study are to investigate the shared biomarkers and potential molecular mechanisms in T2D combined with OA.
T2D and OA-related differentially expressed genes (DEGs) were identified via bioinformatic analysis on Gene Expression Omnibus (GEO) datasets GSE26168 and GSE114007 respectively. Subsequently, extensive target prediction and network analysis were finished with Gene Ontology (GO), protein-protein interaction (PPI), and pathway enrichment with DEGs. The transcription factors (TFs) and miRNAs coupled in co-expressed DEGs involved in T2D and OA were predicted as well. The key genes expressed both in the clinical tissues of T2D and OA were detected with western blot and qRT-PCR assay. Finally, the most promising candidate compounds were predicted with the Drug-Gene Interaction Database (DGIdb) and molecular docking.
In this study, 209 shared DEGs between T2D and OA were identified. Functional analysis disclosed that these DEGs are predominantly related to ossification, regulation of leukocyte migration, extracellular matrix (ECM) structural constituents, PI3K/AKT, and Wnt signaling pathways. Further analysis via Protein-Protein Interaction (PPI) analysis and validation with external datasets emphasized MMP9 and ANGPTL4 as crucial genes in both T2D and OA. Our findings were validated through qRT-PCR and Western blot analyses, which indicated high expression levels of these pivotal genes in T2D, OA, and T2D combined with OA cases. Additionally, the analysis of Transcription Factors (TFs)-miRNA interactions identified 7 TFs and one miRNA that jointly regulate these important genes. The Receiver Operating characteristic (ROC) analysis demonstrated the significant diagnostic potential of MMP9 and ANGPTL4.Moreover, we identified raloxifene, ezetimibe, and S-3304 as promising agents for patients with both T2D and OA.
This study uncovers the shared signaling pathways, biomarkers, potential therapeutics, and diagnostic models for individuals suffering from both T2D and OA. These findings not only present novel perspectives on the complex interplay between T2D and OA but also hold significant promise for improving the clinical management and prognosis of patients with this concurrent condition.
Mao G
,Xu W
,Wan L
,Wang H
,Xu S
,Zhang L
,Li S
,Zhang J
,Lai Z
,Lan Y
,Liu J
... -
《Frontiers in Immunology》
-
Identification of Disease-Specific Hub Biomarkers and Immune Infiltration in Osteoarthritis and Rheumatoid Arthritis Synovial Tissues by Bioinformatics Analysis.
Osteoarthritis (OA) and rheumatoid arthritis (RA) are well-known cause of joint disability. Although they have shown the analogous clinical features involving chronic synovitis that progresses to cartilage and bone destruction, the pathogenesis that initiates and perpetuates synovial lesions between RA and OA remains elusive.
This study is aimed at identifying disease-specific hub genes, exploring immune cell infiltration, and elucidating the underlying mechanisms associated with RA and OA synovial lesion.
Gene expression profiles (GSE55235, GSE55457, GSE55584, and GSE12021) were selected from Gene Expression Omnibus for analysis. Differentially expressed genes (DEGs) were identified by the "LIMMA" package in Bioconductor. The DEGs were identified by Gene Ontology (GO) and KEGG pathway analysis. A protein-protein interaction network was constructed to identify candidate hub genes by using STRING and Cytoscape. Hub genes were identified by validating from GSE12021. Furthermore, we employed the CIBERSORT website to assess immune cell infiltration between OA and RA. Finally, we explored the correlation between the levels of hub genes and relative proportion of immune cells in OA and RA.
We identified 68 DEGs which were mainly enriched in immune response and chemokine signaling pathway. Six hub genes with a cutoff of AUC > 0.80 by ROC analysis and relative expression of P < 0.05 were identified successfully. Compared with OA, the RA synovial tissues consisted of a higher proportion of 7 immune cells, whereas 4 immune cells were found in relatively lower proportion (P < 0.05). In addition, the levels of 6 hub genes were closely associated with relative proportion of 11 immune cells in OA and RA.
We used bioinformatics analysis to identify hub genes and explored immune cell infiltration of immune microenvironment in synovial tissues. Our results should offer insights into the underlying molecular mechanisms of synovial lesion and provide potential target for immune-based therapies of OA and RA.
Sun F
,Zhou JL
,Peng PJ
,Qiu C
,Cao JR
,Peng H
... -
《-》
-
Identification of core genes shared by ischemic stroke and myocardial infarction using an integrated approach.
Both ischemic stroke (IS) and myocardial infarction (MI) are caused by vascular occlusion that results in ischemia. While there may be similarities in their mechanisms, the potential relationship between these 2 diseases has not been comprehensively analyzed. Therefore, this study explored the commonalities in the pathogenesis of IS and MI.
Datasets for IS (GSE58294, GSE16561) and MI (GSE60993, GSE61144) were downloaded from the Gene Expression Omnibus database. Transcriptome data from each of the 4 datasets were analyzed using bioinformatics, and the differentially expressed genes (DEGs) shared between IS and MI were identified and subsequently visualized using a Venn diagram. A protein-protein interaction (PPI) network was constructed using the Interacting Gene Retrieval Tool database, and identification of key core genes was performed using CytoHubba. Gene Ontology (GO) term annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the shared DEGs were conducted using prediction and network analysis methods, and the functions of the hub genes were determined using Metascape.
The analysis revealed 116 and 1321 DEGs in the IS and MI datasets, respectively. Of the 75 DEGs shared between IS and MI, 56 were upregulated and 19 were downregulated. Furthermore, 15 core genes - S100a12, Hp, Clec4d, Cd163, Mmp9, Ormdl3, Il2rb, Orm1, Irak3, Tlr5, Lrg1, Clec4e, Clec5a, Mcemp1, and Ly96 - were identified. GO enrichment analysis of the DEGs showed that they were mainly involved in the biological functions of neutrophil degranulation, neutrophil activation during immune response, and cytokine secretion. KEGG analysis showed enrichment in pathways pertaining to Salmonella infection, Legionellosis, and inflammatory bowel disease. Finally, the core gene-transcription factor, gene-microRNA, and small-molecule relationships were predicted.
These core genes may provide a novel theoretical basis for the diagnosis and treatment of IS and MI.
Wang M
,Gao Y
,Chen H
,Cheng J
,Wang G
... -
《-》
-
Characterizing mitochondrial features in osteoarthritis through integrative multi-omics and machine learning analysis.
Osteoarthritis (OA) stands as the most prevalent joint disorder. Mitochondrial dysfunction has been linked to the pathogenesis of OA. The main goal of this study is to uncover the pivotal role of mitochondria in the mechanisms driving OA development.
We acquired seven bulk RNA-seq datasets from the Gene Expression Omnibus (GEO) database and examined the expression levels of differentially expressed genes related to mitochondria in OA. We utilized single-sample gene set enrichment analysis (ssGSEA), gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA) analyses to explore the functional mechanisms associated with these genes. Seven machine learning algorithms were utilized to identify hub mitochondria-related genes and develop a predictive model. Further analyses included pathway enrichment, immune infiltration, gene-disease relationships, and mRNA-miRNA network construction based on these hub mitochondria-related genes. genome-wide association studies (GWAS) analysis was performed using the Gene Atlas database. GSEA, gene set variation analysis (GSVA), protein pathway analysis, and WGCNA were employed to investigate relevant pathways in subtypes. The Harmonizome database was employed to analyze the expression of hub mitochondria-related genes across various human tissues. Single-cell data analysis was conducted to examine patterns of gene expression distribution and pseudo-temporal changes. Additionally, The real-time polymerase chain reaction (RT-PCR) was used to validate the expression of these hub mitochondria-related genes.
In OA, the mitochondria-related pathway was significantly activated. Nine hub mitochondria-related genes (SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4) were identified. They constructed predictive models with good ability to predict OA. These genes are primarily associated with macrophages. Unsupervised consensus clustering identified two mitochondria-associated isoforms that are primarily associated with metabolism. Single-cell analysis showed that they were all expressed in single cells and varied with cell differentiation. RT-PCR showed that they were all significantly expressed in OA.
SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4 are potential mitochondrial target genes for studying OA. The classification of mitochondria-associated isoforms could help to personalize treatment for OA patients.
Wu Y
,Hu H
,Wang T
,Guo W
,Zhao S
,Wei R
... -
《Frontiers in Immunology》