-
DISSyphilis and the risk of HIV infection: A Mendelian randomization study.
Chen X
《-》
-
[Genetic Causation Analysis of Hyperandrogenemia Testing Indicators and Preeclampsia].
Some epidemiological studies have shown that pregnant women who develop preeclampsia (PE) have elevated levels of testosterone in their maternal plasma compared to women with normal blood pressure during pregnancy, revealing a potential association between hyperandrogenism in women and PE. To explore the causal relationship between hyperandrogenism and PE, this study selected total testosterone (TT), bioavailable testosterone (BIOT), and sex hormone binding globulin (SHBG) as exposure factors and PE and chronic hypertension with superimposed PE as disease outcomes. Two-sample Mendelian randomization (MR) analyses were used to genetically dissect the causal relationships between the three exposure factors (TT, BIOT, and SHBG) and the outcomes of PE and chronic hypertension with superimposed PE.
Two independent genome-wide association study (GWAS) databases were used for the two-sample MR analysis. In the GWAS data of female participants from the UK Biobank cohort, single nucleotide polymorphisms (SNPs) associated with TT, BIOT, and SHBG were analyzed, involving 230454, 188507, and 188908 samples, respectively. GWAS data on PE and chronic hypertension with superimposed PE from the Finnish database were used to calculate SNP, involving 3556 PE cases and 114735 controls, as well as 38 cases of chronic hypertension with superimposed PE and 114735 controls. To meet the assumptions of instrumental relevance and independence in MR analysis, SNPs associated with exposure were identified at the genome-wide level (P<5.0×10-8), and those in linkage disequilibrium interference were excluded based on clustering thresholds of R 2<0.001 and an allele distance greater than 10000 kb. Known confounding factors, including previous PE, chronic kidney disease, chronic hypertension, diabetes, systemic lupus erythematosus, or antiphospholipid syndrome, were also identified and the relevant SNPs were removed. Finally, we extracted the outcome data based on the exposure-related SNPs in the outcome GWAS, integrating exposure and outcome data, and removing palindromic sequences. Five genetic causal analysis methods, including inverse variance-weighted method (IVW), MR-Egger regression, weighted median method, simple mode method, and weighted mode method, were used to infer causal relationships. In the IVW, it was assumed that the selected SNPs satisfied the three assumptions and provided the most ideal estimate of the effect. IVW was consequently used as the primary analysis method in this study. Considering the potential heterogeneity among the instrumental variables, random-effects IVW was used for MR analysis. The results were interpreted using odds ratios (OR) and the corresponding 95% confidence interval (CI) to explain the impact of exposure factors on PE and chronic hypertension with superimposed PE. If the CI did not include 1 and had a P value less than 0.05, the difference was considered statistically significant. Sensitivity analysis was conducted to assess heterogeneity and pleiotropy. Heterogeneity was examined using Cochran's Q test, and pleiotropy was assessed using MR-Egger intercept analysis. Additionally, leave-one-out analysis was conducted to examine whether individual SNPs were driving the causal associations. To further validate the findings, MR analyses were performed using the same methods and outcome variables, but with different exposure factors, including waist-to-hip ratio adjusted for BMI (WHRadjBMI) and 25-hydroxyvitamin D levels, with MR results for WHRadjBMI and PE serving as the positive controls and MR results for 25-hydroxyvitamin D levels and PE as the negative controls.
According to the criteria for selecting genetic instrumental variables, 186, 127, and 262 SNPs were identified as genetic instrumental variables significantly associated with testosterone indicators TT, BIOT, and SHBG. MR analysis did not find a causal relationship between the TT, BIOT, and SHBG levels and the risk of developing PE and chronic hypertension with superimposed PE. The IVW method predicted that genetically predicted TT (OR [95% CI]=1.018 [0.897-1.156], P=0.78), BIOT (OR [95% CI]=1.11 [0.874-1.408], P=0.392), and SHBG (OR [95% CI]=0.855 [0.659-1.109], P=0.239) were not associated with PE. Similarly, genetically predicted TT (OR [95% CI]=1.222 [0.548-2.722], P=0.624), BIOT (OR [95% CI]=1.066 [0.242-4.695], P=0.933), and SHBG (OR [95% CI]=0.529 [0.119-2.343], P=0.402) were not significantly associated with chronic hypertension with superimposed PE. Additionally, MR analysis using the MR-Egger method, weighted median method, simple mode method, and weighted mode method yielded consistent results, indicating no significant causal relationship between elevated testosterone levels and PE or chronic hypertension with superimposed PE. Heterogeneity was observed for SHBG in the analysis with PE (Cochran's Q test, P=0.01), and pleiotropy was detected for BIOT in the analysis with PE (MR-Egger intercept analysis, P=0.014), suggesting that the instrumental variables did not affect PE through BIOT. Other instrumental variables did not show significant heterogeneity or pleiotropy. Leave-one-out analysis confirmed that the results of the MR analysis were not driven by individual instrumental variables. Consistent with previous MR studies, the results of the control MR analyses using WHRadjBMI and 25-hydroxyvitamin D levels supported the accuracy of the MR analysis approach and the methods used in this study.
The MR analysis results suggest that current genetic evidence does not support a causal relationship between TT, BIOT, and SHBG levels and the development of PE and chronic hypertension with superimposed PE. This study suggests that elevated testosterone may be a risk factor for PE but not a direct cause.
Lin C
,Chen J
,Zhao X
《-》
-
Genetic causal relationship between age at menarche and benign oesophageal neoplasia identified by a Mendelian randomization study.
The occurrence and development of oesophageal neoplasia (ON) is closely related to hormone changes. The aim of this study was to investigate the causal relationships between age at menarche (AAMA) or age at menopause (AAMO) and benign oesophageal neoplasia (BON) or malignant oesophageal neoplasia (MON) from a genetic perspective.
Genome-wide association study (GWAS) summary data of exposures (AAMA and AAMO) and outcomes (BON and MON) were obtained from the IEU OpenGWAS database. We performed a two-sample Mendelian randomization (MR) study between them. The inverse variance weighted (IVW) was used as the main analysis method, while the MR Egger, weighted median, simple mode, and weighted mode were supplementary methods. The maximum likelihood, penalized weighted median, and IVW (fixed effects) were validation methods. We used Cochran's Q statistic and Rucker's Q statistic to detect heterogeneity. The intercept test of the MR Egger and global test of MR pleiotropy residual sum and outlier (MR-PRESSO) were used to detect horizontal pleiotropy, and the distortion test of the MR-PRESSO analysis was used to detect outliers. The leave-one-out analysis was used to detect whether the MR analysis was affected by single nucleotide polymorphisms (SNPs). In addition, the MR robust adjusted profile score (MR-RAPS) method was used to assess the robustness of MR analysis.
The random-effects IVW results showed that AAMA had a negative genetic causal relationship with BON (odds ratio [OR] = 0.285 [95% confidence interval [CI]: 0.130-0.623], P = 0.002). The weighted median, maximum likelihood, penalized weighted median, and IVW (fixed effects) were consistent with random-effects IVW (P < 0.05). The MR Egger, simple mode and weighted mode results showed that AAMA had no genetic causal relationship with BON (P > 0.05). However, there were no causal genetic relationships between AAMA and MON (OR = 1.132 [95%CI: 0.621-2.063], P = 0.685), AAMO and BON (OR = 0.989 [95%CI: 0.755-1.296], P = 0.935), or AAMO and MON (OR = 1.129 [95%CI: 0.938-1.359], P = 0.200). The MR Egger, weighted median, simple mode, weighted mode, maximum likelihood, penalized weighted median, and IVW (fixed effects) were consistent with a random-effects IVW (P > 0.05). MR analysis results showed no heterogeneity, the horizontal pleiotropy and outliers (P > 0.05). They were not driven by a single SNP, and were normally distributed (P > 0.05).
Only AAMA has a negative genetic causal relationship with BON, and no genetic causal relationships exist between AAMA and MON, AAMO and BON, or AAMO and MON. However, it cannot be ruled out that they are related at other levels besides genetics.
Su Y
,Hu Y
,Xu Y
,Yang M
,Wu F
,Peng Y
... -
《Frontiers in Endocrinology》
-
Identification of atrial fibrillation-related genes through transcriptome data analysis and Mendelian randomization.
Atrial fibrillation (AF) is a common persistent arrhythmia characterized by rapid and chaotic atrial electrical activity, potentially leading to severe complications such as thromboembolism, heart failure, and stroke, significantly affecting patient quality of life and safety. As the global population ages, the prevalence of AF is on the rise, placing considerable strains on individuals and healthcare systems. This study utilizes bioinformatics and Mendelian Randomization (MR) to analyze transcriptome data and genome-wide association study (GWAS) summary statistics, aiming to identify biomarkers causally associated with AF and explore their potential pathogenic pathways.
We obtained AF microarray datasets GSE41177 and GSE79768 from the Gene Expression Omnibus (GEO) database, merged them, and corrected for batch effects to pinpoint differentially expressed genes (DEGs). We gathered exposure data from expression quantitative trait loci (eQTL) and outcome data from AF GWAS through the IEU Open GWAS database. We employed inverse variance weighting (IVW), MR-Egger, weighted median, and weighted model approaches for MR analysis to assess exposure-outcome causality. IVW was the primary method, supplemented by other techniques. The robustness of our results was evaluated using Cochran's Q test, MR-Egger intercept, MR-PRESSO, and leave-one-out sensitivity analysis. A "Veen" diagram visualized the overlap of DEGs with significant eQTL genes from MR analysis, referred to as common genes (CGs). Additional analyses, including Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and immune cell infiltration studies, were conducted on these intersecting genes to reveal their roles in AF pathogenesis.
The combined dataset revealed 355 differentially expressed genes (DEGs), with 228 showing significant upregulation and 127 downregulated. Mendelian randomization (MR) analysis identified that the autocrine motility factor receptor (AMFR) [IVW: OR = 0.977; 95% CI, 0.956-0.998; P = 0.030], leucine aminopeptidase 3 (LAP3) [IVW: OR = 0.967; 95% CI, 0.934-0.997; P = 0.048], Rab acceptor 1 (RABAC1) [IVW: OR = 0.928; 95% CI, 0.875-0.985; P = 0.015], and tryptase beta 2 (TPSB2) [IVW: OR = 0.971; 95% CI, 0.943-0.999; P = 0.049] are associated with a reduced risk of atrial fibrillation (AF). Conversely, GTPase-activating SH3 domain-binding protein 2 (G3BP2) [IVW: OR = 1.030; 95% CI, 1.004-1.056; P = 0.024], integrin subunit beta 2 (ITGB2) [IVW: OR = 1.050; 95% CI, 1.017-1.084; P = 0.003], glutaminyl-peptide cyclotransferase (QPCT) [IVW: OR = 1.080; 95% CI, 1.010-0.997; P = 1.154], and tripartite motif containing 22 (TRIM22) [IVW: OR = 1.048; 95% CI, 1.003-1.095; P = 0.035] are positively associated with AF risk. Sensitivity analyses indicated a lack of heterogeneity or horizontal pleiotropy (P > 0.05), and leave-one-out analysis did not reveal any single nucleotide polymorphisms (SNPs) impacting the MR results significantly. GO and KEGG analyses showed that CG is involved in processes such as protein polyubiquitination, neutrophil degranulation, specific and tertiary granule formation, protein-macromolecule adaptor activity, molecular adaptor activity, and the SREBP signaling pathway, all significantly enriched. The analysis of immune cell infiltration demonstrated associations of CG with various immune cells, including plasma cells, CD8T cells, resting memory CD4T cells, regulatory T cells (Tregs), gamma delta T cells, activated NK cells, activated mast cells, and neutrophils.
By integrating bioinformatics and MR approaches, genes such as AMFR, G3BP2, ITGB2, LAP3, QPCT, RABAC1, TPSB2, and TRIM22 are identified as causally linked to AF, enhancing our understanding of its molecular foundations. This strategy may facilitate the development of more precise biomarkers and therapeutic targets for AF diagnosis and treatment.
Zhang Y
,Lian Q
,Nie Y
,Zhao W
... -
《Frontiers in Cardiovascular Medicine》
-
Causal relationship between bone mineral density and intervertebral disc degeneration: a univariate and multivariable mendelian randomization study.
Although previous studies have suggested a possible association between bone mineral density (BMD) and intervertebral disc degeneration (IDD), the causal relationship between them remains unclear. Evidence from accumulating studies indicates that they might mutually influence one another. However, observational studies may be affected by potential confounders. Meanwhile, Mendelian randomization (MR) study can overcome these confounders to assess causality.
This Mendelian randomization (MR) study aimed to explore the causal effect of bone mineral density (BMD) on intervertebral disc degeneration (IDD).
Summary data from genome-wide association studies of bone mineral density (BMD) and IDD (the FinnGen biobank) have been acquired. The inverse variance weighted (IVW) method was utilized as the primary MR analysis approach. Weighted median, MR-Egger regression, weighted mode, and simple mode were used as supplements. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were performed to assess horizontal pleiotropy. Cochran's Q test evaluated heterogeneity. Leave-one-out sensitivity analysis was further conducted to determine the reliability of the causal relationship. Multivariate MR (MVMR) analyses used multivariable inverse variance-weighted methods to individually and jointly adjust for four potential confounders, body mass index (BMI), Type2 diabetes, hyperthyroidism and smoking. A reverse MR analysis was conducted to assess potential reverse causation.
In the univariate MR analysis, femoral neck bone mineral density (FNBMD), heel bone mineral density (eBMD), lumbar spine bone mineral density (LSBMD), and total body bone mineral density (TB BMD) had a direct causal effect on intervertebral disc degeneration (IDD) [FNBMD-related analysis: OR(95%CI) = 1.17 (1.04 to 1.31), p = 0.008, eBMD-related analysis: OR(95%CI) = 1.06 (1.01 to 1.12), p = 0.028, LSBMD-related analysis: OR(95%CI) = 1.20 (1.10 to 1.31), p = 3.38E-7,TB BMD-related analysis: OR(95%CI) = 1.20 (1.12 to 1.29), p = 1.0E-8]. In the MVMR analysis, it was revealed that, even after controlling for confounding factors, heel bone mineral density (eBMD), lumbar spine bone mineral density (LSBMD), and total body bone mineral density (TB BMD) still maintained an independent and significant causal association with IDD(Adjusting for heel bone mineral density: beta = 0.073, OR95% CI = 1.08(1.02 to 1.14), P = 0.013; Adjusting for lumbar spine bone mineral density: beta = 0.11, OR(95%CI) = 1.12(1.02 to 1.23), P = 0.03; Adjusting for total body bone mineral density: beta = 0.139, OR95% CI = 1.15(1.06 to 1.24), P = 5.53E - 5). In the reverse analysis, no evidence was found to suggest that IDD has an impact on BMD.
The findings from our univariate and multivariable Mendelian randomization analysis establish a substantial positive causal association between BMD and IDD, indicating that higher bone mineral density may be a significant risk factor for intervertebral disc degeneration. Notably, no causal effect of IDD on these four measures of bone mineral density was observed. Further research is required to elucidate the underlying mechanisms governing this causal relationship.
Li L
,Li D
,Geng Z
,Huo Z
,Kang Y
,Guo X
,Yuan B
,Xu B
,Wang T
... -
《BMC MUSCULOSKELETAL DISORDERS》