Mailuo Shutong pills inhibit neuroinflammation by regulating glucose metabolism disorders to protect mice from cerebral ischemia-reperfusion injury.

来自 PUBMED

作者:

Guan YPan LNiu DLi XLi SCheng GZeng ZYue RYao JZhang GSun CYang H

展开

摘要:

Mailuo Shutong Pill (MLST), a traditional Chinese medicine (TCM), has been widely used for clearing heat and detoxifying, eliminating stasis and dredging meridians, dispelling dampness and diminishing swelling. Earlier study found that MLST could improve cerebral ischemic-reperfusion injury, however, the potential mechanism has not been well evaluated. In this study, a well established and widely used mice model of middle cerebral artery occlusion/reperfusion (MCAO/R) was preformed to evaluate the protective function of MLST on cerebral ischemic-reperfusion injury and further discuss the potential pharmacological mechanisms. Chemical profiling of MLST was analyzed based on Ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry. ICR mice were challenged by MCAO/R surgery. The protective effect of MLST on MCAO/R injury was evaluated by neurological deficit score, cerebral infarct rate, brain water content, H&E and nissl staining. The blood-brain barrier (BBB) integrity was detected by Evans blue staining. The potential pharmacological mechanism of MLST in treating MCAO/R injury was further elucidated by the methods of proteomics, central carbon targeted metabolomics, as well as Western blot. Immunohistochemistry was used to detect the microglia infiltration, enzyme linked immunosorbent assay (ELISA) kit was explored to evaluate the content of IL-1β, TNF-α and IL-6 in brain tissue, and Western blot was used to detect proteins expression in brain tissue. A total of 76 chemical compounds have been determined in MLST. MLST effectively protected mice from MCAO/R injury, which was confirmed by lower neurological deficit score, cerebral infarct rate, brain water content and nissl body loss, and improved brain pathology. Meanwhile, MLST upregulated the expression of ZO-1, Occludin and Claudin 5 by downregulating the ratio of TIMP1/MMP9 to suppress the entrance of Evans blue to brain tissue, indicating that MLST maintained the integrity of BBB. Further studies indicated that MLST inhibited the inflammatory level of brain tissue by inhibiting microglia infiltration and downregulating NLRP3 inflammasome signaling pathway. The results of proteomics, Western blot, and central carbon targeted metabolomics confirmed that MLST regulated Glycolysis/Gluconogenesis, Pyruvate metabolism and TCA cycle in brain tissue of mice with MCAO/R. MLST inhibits neuroinflammation by regulating glucose metabolism disorders to interfere with immune metabolism reprogramming and inhibit the NLRP3 inflammasome signaling pathway, and finally improve cerebral ischemia-reperfusion injury. This study confirms that MLST is a potential drug for treating Cerebral ischemic stroke.

收起

展开

DOI:

10.1016/j.jep.2024.118621

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(125)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读