Fe(3)O(4) Nanoparticles That Modulate the Polarisation of Tumor-Associated Macrophages Synergize with Photothermal Therapy and Immunotherapy (PD-1/PD-L1 Inhibitors) to Enhance Anti-Tumor Therapy.
摘要:
Traditional surgical resection, radiotherapy, and chemotherapy have been the treatment options for patients with head and neck squamous cell carcinoma (HNSCC) over the past few decades. Nevertheless, the five-year survival rate for patients has remained essentially unchanged, and research into treatments has been relatively stagnant. The combined application of photothermal therapy (PTT) and immunotherapy for treating HNSCC has considerable potential. Live-dead cell staining and CCK-8 assays proved that Fe3O4 nanoparticles are biocompatible in vitro. In vitro, cellular experiments utilized flow cytometry and immunofluorescence staining to verify the effect of Fe3O4 nanoparticles on the polarisation of tumor-associated macrophages. In vivo, animal experiments were conducted to assess the inhibitory effect of Fe3O4 nanoparticles on tumor proliferation under the photothermal effect in conjunction with BMS-1. Tumour tissue sections were stained to observe the effects of apoptosis and the inhibition of tumor cell proliferation. The histological damage to animal organs was analyzed by hematoxylin and eosin (H&E) staining. The stable photothermal properties of Fe3O4 nanoparticles were validated by in vitro cellular and in vivo animal experiments. Fe3O4 photothermal action not only directly triggered immunogenic cell death (ICD) and enhanced the immunogenicity of the tumor microenvironment but also regulated the expression of tumor-associated macrophages (TAMs), up-regulating CD86 and down-regulating CD206 to inhibit tumor growth. The PD-1/PD-L1 inhibitor promoted tumor suppression, and reduced tumor recurrence and metastasis. In vivo studies demonstrated that the photothermal action exhibited a synergistic effect when combined with immunotherapy, resulting in significant suppression of primary tumors and an extension of survival. In this study, we applied Fe3O4 photothermolysis in a biomedical context, combining photothermolysis with immunotherapy, exploring a novel pathway for treating HNSCC and providing a new strategy for effectively treating HNSCC.
收起
展开
DOI:
10.2147/IJN.S459400
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(130)
参考文献(61)
引证文献(0)
来源期刊
影响因子:7.026
JCR分区: 暂无
中科院分区:暂无