Comparative biochemistry of PET hydrolase-carbohydrate-binding module fusion enzymes on a variety of PET substrates.

来自 PUBMED

作者:

Rennison APPrestel AWesth PMøller MS

展开

摘要:

Enzyme-driven recycling of PET has now become a fully developed industrial process. With the right pre-treatment, PET can be completely depolymerized within workable timeframes. This has been realized due to extensive research conducted over the past decade, resulting in a large set of engineered PET hydrolases. Among various engineering strategies to enhance PET hydrolases, fusion with binding domains has been used to tune affinity and boost activity of the enzymes. While fusion enzymes have demonstrated higher activity in many cases, these results are primarily observed under conditions that would not be economically viable at scale. Furthermore, the wide variation in PET substrates, conditions, and combinations of PET hydrolases and binding domains complicates direct comparisons. Here, we present a self-consistent and thorough analysis of two leading PET hydrolases, LCCICCG and PHL7. Both enzymes were evaluated both without and with a substrate-binding domain across a range of industrially relevant PET substrates. We demonstrate that the presence of a substrate-binding module does not significantly affect the affinity of LCCICCG and PHL7 for PET. However, significant differences exist in how the fusion enzymes act on different PET substrates and solid substrate loading, ranging from a 3-fold increase in activity to a 6-fold decrease. These findings could inform the tailoring of enzyme choice to different industrial scenarios.

收起

展开

DOI:

10.1016/j.enzmictec.2024.110479

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(101)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读