-
Impact of Race and Ethnicity on Outcomes After Umbilical Cord Blood Transplantation.
Umbilical cord blood transplant (UCBT) improves access to transplant for patients lacking a fully matched donor. Previous Center for International Blood and Marrow Transplant Research (CIBMTR) showed that Black patients had a lower overall survival (OS) than White patients following single UCBT. The current study draws on a larger modern cohort and compares outcomes among White, Latinx, Black, and Asian patients.
To compare outcomes by social determinants of health.
We designed a retrospective study using CIBMTR data. US patients were between ages 1 and 80; 983 received single and 1529 double UCBT as reported to CIBMTR, following either a myeloablative (N = 1752) or reduced intensity conditioning (N = 759) for acute myeloid leukemia, acute lymphoid leukemia, or myelodysplasia. The primary outcome was 2-year OS. Secondary outcomes included disease free survival, transplant related mortality (TRM), acute and chronic graft vs host disease (GVHD), and GVHD free, relapse free survival (GRFS).
For 1705 adults, in univariate analysis, 2-year OS was 41.5% (99% CI, 37.6 to 45.3) for Whites, 36.1% (99% CI, 28.2 to 44.5) for Latinx, 45.8% (99% CI, 36.7 to 55.1) for Blacks, and 44.5% (99% CI, 33.6 to 55.6) for Asians. In multivariate analysis of adults, Latinx patients had inferior OS compared to black patients (p = .0005, HR 1.45, 99% CI 1.18 to 1.79). OS improved over time for all racial/ethnic groups. GVHD rates were comparable among the different racial/ethnic groups. In the 807 children, the 2-year OS in univariate analysis was 66.1% (99% CI, 59.7 to 72.2) for Whites, 57.1% (99%CI, 49 to 64.9) for Latinx, 46.8% (99%CI, 35.3 to 58.4) for Blacks, and 53.8% (99%CI, 32.7 to 74.2) for Asians. In multivariate analysis, no difference in OS was observed among racial/ethnic groups (p = .051). Grade III/IV acute GVHD was higher in Blacks compared with Whites (p = .0016, HR 2.25, 99% CI 1.36 to 3.74) and Latinx (p = .0016, HR 2.17, 99% CI 1.43 to 3.30). There was no survival advantage to receiving a UCB unit from a donor of similar race and ethnicity, for any racial/ethnic groups, for both children and adults. Black and Latinx adult patients were more likely to live in areas defined as high poverty. Patients from high poverty level areas had worse OS (p = .03), due to a higher rate of TRM (p=0.04). Educational level, and type of insurance did not impact overall survival, GVHD, TRM or other transplant outcomes. Children from areas with a higher poverty level had higher TRM, regardless of race and ethnicity (p = .02). Public health insurance, such as Medicaid, was also associated with a higher TRM (p = .02). However, poverty did not impact pediatric OS, DFS, or other post-transplant outcomes.
OS for UCBT has improved over time. In adults, OS is comparable among Whites, Blacks, and Asians and lower for Latinx patients. In children, OS is comparable among Whites, Blacks, Latinx, and Asians, but Grade III/IV acute GVHD was higher in Black patients. There was no survival benefit to matching UCB unit and patient by race and ethnicity for adults and children.
Ballen K
,Wang T
,He N
,Knight JM
,Hong S
,Frangoul H
,Verdonck LF
,Steinberg A
,Diaz MA
,LeMaistre CF
,Badawy SM
,Pu JJ
,Hashem H
,Savani B
,Sharma A
,Lazarus HM
,Abid MB
,Tay J
,Rangarajan HG
,Kindwall-Keller T
,Freytes CO
,Beitinjaneh A
,Winestone LE
,Gergis U
,Farhadfar N
,Bhatt NS
,Schears RM
,Gómez-Almaguer D
,Aljurf M
,Agrawal V
,Kuwatsuka Y
,Seo S
,Marks DI
,Lehmann L
,Wood WA
,Hashmi S
,Saber W
... -
《-》
-
Bone marrow versus peripheral blood allogeneic haematopoietic stem cell transplantation for haematological malignancies in adults.
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is an established treatment option for many malignant and non-malignant haematological disorders. Peripheral blood stem cells represent the main stem cell source in malignant diseases due to faster engraftment and practicability issues compared with bone marrow stem cells. Since the early 2000s, there have been many developments in the clinical field. Allo-HSCT using haploidentical family donors (haplo-HSCT) has emerged as an alternative for people who do not have human leukocyte antigen (HLA)-matched siblings or unrelated donors. In addition, the introduction of new methods and strategies in allo-HSCT, such as the use of post-transplant cyclophosphamide (PT-Cy), better donor selection, the more frequent administration of anti-thymocyte globulins (ATGs), but also improved management of side effects such as graft-versus-host disease (GvHD) and infection, have impacted outcomes after allo-HSCT. In addition, as transplant indications and strategies continue to adapt in line with novel research findings, the effect of the stem cell source on post-transplant outcomes is unclear. For our analysis, we considered peripheral blood stem cells as the standard graft source for adults with haematological malignancies. This is an update of a review first published in 2014.
To assess the effect of bone marrow transplantation versus peripheral blood stem cell transplantation in adults with haematological malignancies with regard to overall survival, disease-free survival, incidence of non-relapse or transplant-related mortality, incidence of extensive chronic graft-versus-host disease (GvHD), incidence of acute GvHD grades III to IV, incidence of overall chronic GvHD, and quality of life.
For this update we searched CENTRAL, MEDLINE, Embase, and two trials registries on 2 November 2022 with no language restrictions.
We included randomised controlled trials (RCTs) comparing bone marrow transplantation (BMT) with peripheral blood stem cell transplantation (PBSCT) in adults (aged ≥ 18 years) with haematological malignancies.
Two review authors independently selected studies and extracted data. We evaluated risk of bias using the original Cochrane risk of bias tool (RoB 1), and we evaluated the certainty of the evidence using the GRADE approach.
The updated search identified no new studies for inclusion. We found two additional reports relating to a previously included study; they provided new data on quality of life and infection rates after transplantation. As these are clinically relevant outcomes, quality of life was added to the summary of findings table (replacing acute GvHD II to IV), and rate of infection was added to our list of secondary outcomes. We included nine RCTs with a total of 1521 participants. Overall, the risk of bias in the included studies was low. Median participant age across studies ranged from 21 to 45 years, and studies took place in Canada, the USA, New Zealand, Brazil, Australia, Egypt, and across Europe. Bone marrow transplantation (BMT) compared with peripheral blood stem cell transplantation (PBSCT) likely results in little to no difference in overall survival (hazard ratio (HR) for all-cause death 1.07, 95% CI 0.91 to 1.25; 6 studies, 1330 participants; moderate-certainty evidence). There may be little to no difference between BMT and PBSCT in terms of disease-free survival (HR for disease recurrence or all-cause death 1.04, 95% CI 0.89 to 1.21; 6 studies, 1225 participants; low-certainty evidence) and non-relapse or transplant-related mortality (HR 0.98, 95% CI 0.76 to 1.28; 3 studies, 758 participants; low-certainty evidence). BMT compared with PBSCT likely results in lower rates of extensive chronic GvHD (HR 0.69, 95% CI 0.54 to 0.90; 4 studies, 765 participants; moderate-certainty evidence) and overall chronic GvHD (HR 0.72, 95% CI 0.61 to 0.85; 4 studies, 1121 participants; moderate-certainty evidence). BMT compared with PBSCT may reduce the incidence of acute GvHD grades III to IV, although the 95% CI of the HR is also compatible with no effect (HR 0.75, 95% CI 0.55 to 1.02; 3 studies, 925 participants; moderate-certainty evidence). Evidence from two trials that used different quality of life assessment instruments suggests that BMT compared with PBSCT may be associated with higher quality of life five years after transplantation.
Moderate-certainty evidence suggests little to no difference in overall survival following allo-HSCT using bone marrow versus peripheral blood stem cells (the current clinical standard stem cell source). Low-certainty evidence suggests little to no difference between the stem cell sources in terms of disease-free survival and non-relapse or transplant-related survival. BMT likely reduces the risk of extensive chronic GvHD and overall chronic GvHD compared with PBSCT. Evidence from two RCTs suggests that BMT compared with PBSCT may result in higher long-term quality of life, possibly due to the lower chronic GvHD incidence. With this update, we aimed to supply the most recent data on the choice of stem cell source for allo-HSCT in adults by including new evidence published up to November 2022. We identified no new ongoing studies and no new RCTs with published results. Further research in this field is warranted.
Kiene S
,Albrecht M
,Theurich S
,Scheid C
,Skoetz N
,Holtick U
... -
《Cochrane Database of Systematic Reviews》
-
Sex and gender as predictors for allograft and patient-relevant outcomes after kidney transplantation.
Sex, as a biological construct, and gender, defined as the cultural attitudes and behaviours attributed by society, may be associated with allograft loss, death, cancer, and rejection. Other factors, such as recipient age and donor sex, may modify the association between sex/gender and post-transplant outcomes.
We sought to evaluate the prognostic effects of recipient sex and, separately, gender as independent predictors of graft loss, death, cancer, and allograft rejection following kidney or simultaneous pancreas-kidney (SPK) transplantation. We aimed to evaluate this prognostic effect by defining the relationship between recipient sex or gender and post-transplantation outcomes identifying reasons for variations between sexes and genders, and then quantifying the magnitude of this relationship.
We searched MEDLINE and EMBASE databases from inception up to 12 April 2023, through contact with the Cochrane Kidney and Transplant Information Specialist, using search terms relevant to this review and no language restrictions.
Cohort, case-control, or cross-sectional studies were included if sex or gender were the primary exposure and clearly defined. Studies needed to focus on our defined outcomes post-transplantation. Sex was defined as the chromosomal, gonadal, and anatomical characteristics associated with the biological sex, and we used the terms "males" and "females". Gender was defined as the attitudes and behaviours that a given culture associates with a person's biological sex, and we used the terms "men" and "women".
Two authors independently assessed the references for eligibility, extracted the data and assessed the risk of bias using the Quality in Prognosis Studies (QUIPS) tool. Whenever appropriate, we performed random-effects meta-analyses to estimate the mean difference in outcomes. The outcomes of interest included the Standardised Outcomes in Nephrology-Kidney Transplant (SONG-Tx) core outcomes, allograft loss, death, cancer (overall incidence and site-specific) and acute or chronic graft rejection.
Fifty-three studies (2,144,613 patients; range 59 to 407,963) conducted between 1990 and 2023 were included. Sixteen studies were conducted in the Americas, 12 in Europe, 11 in the Western Pacific, four in the Eastern Mediterranean, three in Africa, two in Southeast Asia, and five across multiple regions. All but one study focused on sex rather than gender as the primary exposure of interest. The number identified as male was 54%; 49 studies included kidney transplant recipients, and four studies included SPK transplant recipients. Twenty-four studies included adults and children, 25 studies included only adults, and four studies included only children. Data from 33 studies were included in the meta-analyses. Among these, six studies presented unadjusted hazard ratios (HRs) that assessed the effect of recipient sex on kidney allograft loss. The other studies reported risk ratios (RRs) for the pre-defined outcomes. Notably, the decision to restrict the meta-analyses to unadjusted estimates arose from the variation in covariate adjustment methods across studies, lacking a common set of adjusted variables. Only three studies considered the modifying effect of recipient age on graft loss or death, which is likely crucial to evaluating sex differences in post-transplant outcomes. No studies considered the modifying effect of recipient age on cancer incidence or allograft rejection risk. In low certainty evidence, compared with male recipients, being female may make little or no difference in kidney allograft loss post-transplantation (7 studies, 5843 patients: RR 0.91, 95% CI 0.73 to 1.12; I2 = 73%). This was also observed in studies that included time-to-event analyses (6 studies, 238,937 patients; HR 1.07, 95% CI, 0.95 to 1.20; I2 = 44%). Two recent large registry-based cohort studies that considered the modifying effects of donor sex and recipient age showed that female recipients under 45 years of age had significantly higher graft loss rates than age-matched male recipients in the setting of a male donor. In contrast, female recipients 60 years and older had lower graft loss rates than age-matched male recipients, regardless of donor sex. Compared with male recipients, being female may make little or no difference in death up to 30 years post-transplantation; however, the evidence is very uncertain (13 studies, 60,818 patients: RR 0.94, 95% CI 0.81 to 1.09; I2 = 92%). Studies that considered the modifying effect of recipient age and donor sex showed that female recipients had a higher excess death risk than males under 45 years of age in the setting of a male donor. Compared with male recipients, being female may make little or no difference in cancer incidence up to 20 years post-transplantation; however, the evidence is very uncertain (7 studies, 25,076 patients; RR 0.84, 95% CI 0.70 to 1.01; I2 = 60%). Compared with male recipients, being female may make little or no difference in the incidence of acute and chronic kidney allograft rejection up to 15 years post-transplantation (9 studies, 6158 patients: RR 0.89, 95% CI 0.75 to 1.05; I2 =54%; low certainty evidence). One study assessed gender and reported that when compared with men, women experienced better five-year survival in high (HR 0.71, 95% CI 0.59 to 0.87) and middle-income areas (HR 0.82, 95% CI 0.74 to 0.92), with no difference in low-income areas (HR 0.85, 95% CI 0.72 to 1.01). There was considerable uncertainty regarding any association between sex or gender and post-transplant patient-relevant outcomes. This was primarily due to clinical and methodological heterogeneity. The observed clinical heterogeneity between studies could be attributed to diverse patient characteristics within sample populations. As a result of limited sex-stratified demographic data being provided, further investigation of this heterogeneity was constrained. However, factors contributing to this finding may include recipient age, donor age, types, and sex. Methodological heterogeneity was noted with the interchangeable use of sex and gender, outcome misclassification, the use of different measures of effects, inconsistent covariate profiles, and disregard for important effect modification.
There is very low to low certainty evidence to suggest there are no differences in kidney and pancreas allograft survival, patient survival, cancer, and acute and chronic allograft rejection between male and female kidney and SPK transplant recipients.
Jayanti S
,Beruni NA
,Chui JN
,Deng D
,Liang A
,Chong AS
,Craig JC
,Foster B
,Howell M
,Kim S
,Mannon RB
,Sapir-Pichhadze R
,Scholes-Robertson NJ
,Strauss AT
,Jaure A
,West L
,Cooper TE
,Wong G
... -
《Cochrane Database of Systematic Reviews》
-
Total Body Irradiation and Fludarabine with Post-Transplantation Cyclophosphamide for Mismatched Related or Unrelated Donor Hematopoietic Cell Transplantation.
Allogeneic hematopoietic cell transplantation (HCT) remains the sole curative treatment for most patients with hematologic malignancies. A well-matched donor (related or unrelated) remains the preferred donor for patients undergoing allogeneic HCT; however, a large number of patients rely on alternative donor choices of mismatched related (haploidentical) or unrelated donors to access HCT. In this retrospective study, we investigated outcomes of patients who underwent mismatched donor (related or unrelated) HCT with a radiation-based myeloablative conditioning MAC regimen in combination with fludarabine, and post-transplantation cyclophosphamide (PTCy) as higher-intensity graft-versus-host disease (GVHD) prophylaxis. We retrospectively assessed HCT outcomes in 155 patients who underwent mismatched donor HCT (related/haploidentical versus unrelated [MMUD]) with fractionated-total body irradiation (fTBI) plus fludarabine and PTCy as GVHD prophylaxis at City of Hope from 2015 to 2021. Diagnoses included acute lymphoblastic leukemia (46.5%), acute myelogenous leukemia (36.1%), and myelodysplastic syndrome (6.5%). The median age at HCT was 38 years, and 126 patients (81.3%) were an ethnic minority. The Hematopoietic Stem Cell Transplantation Comorbidity Index was ≥3 in 36.1% of the patients, and 29% had a Disease Risk Index (DRI) of high/very high. The donor type was haploidentical in 67.1% of cases and MMUD in 32.9%. At 2 years post-HCT, disease-free survival (DFS) was 75.4% and overall survival (OS) was 80.6% for all subjects. Donor type did not impact OS (hazard ratio [HR], .72; 95% confidence interval [CI], .35 to 1.49; P = .37) and DFS (HR, .78; 95% CI, .41 to 1.48; P = .44), but younger donors was associated with less grade III-IV acute GVHD (HR, 6.60; 95% CI, 1.80 to 24.19; P = .004) and less moderate or severe chronic GVHD (HR, 3.53; 95% CI, 1.70 to 7.34; P < .001), with a trend toward better survival (P = .099). The use of an MMUD was associated with significantly faster neutrophil recovery (median, 15 days versus 16 days; P = .014) and platelet recovery (median, 18 days versus 24 days; P = .029); however, there was no difference in GVHD outcomes between the haploidentical donor and MMUD groups. Nonrelapse mortality (HR, .86; 95% CI, .34 to 2.20; P = .76) and relapse risk (HR, .78; 95% CI, .33 to 1.85; P = .57) were comparable in the 2 groups. Patient age <40 years and low-intermediate DRI showed a DFS benefit (P = .004 and .029, respectively). High or very high DRI was the only predictor of increased relapse (HR, 2.89; 95% CI, 1.32 to 6.34; P = .008). In conclusion, fludarabine/fTBI with PTCy was well-tolerated in mismatched donor HCT, regardless of donor relationship to the patient, provided promising results, and increased access to HCT for patients without a matched donor, especially patients from ethnic minorities and patients of mixed race.
Arslan S
,Desai A
,Yang D
,Mokhtari S
,Tiemann K
,Otoukesh S
,Samara Y
,Blackmon A
,Agrawal V
,Pourhassan H
,Amanam I
,Ball B
,Koller P
,Salhotra A
,Aribi A
,Becker P
,Curtin P
,Artz A
,Aldoss I
,Ali H
,Stewart F
,Smith E
,Stein A
,Marcucci G
,Forman SJ
,Nakamura R
,Al Malki MM
... -
《-》
-
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Ovarian cancer is the seventh most common cancer among women and a leading cause of death from gynaecological malignancies. Epithelial ovarian cancer is the most common type, accounting for around 90% of all ovarian cancers. This specific type of ovarian cancer starts in the surface layer covering the ovary or lining of the fallopian tube. Surgery is performed either before chemotherapy (upfront or primary debulking surgery (PDS)) or in the middle of a course of treatment with chemotherapy (neoadjuvant chemotherapy (NACT) and interval debulking surgery (IDS)), with the aim of removing all visible tumour and achieving no macroscopic residual disease (NMRD). The aim of this review is to investigate the prognostic impact of size of residual disease nodules (RD) in women who received upfront or interval cytoreductive surgery for advanced (stage III and IV) epithelial ovarian cancer (EOC).
To assess the prognostic impact of residual disease after primary surgery on survival outcomes for advanced (stage III and IV) epithelial ovarian cancer. In separate analyses, primary surgery included both upfront primary debulking surgery (PDS) followed by adjuvant chemotherapy and neoadjuvant chemotherapy followed by interval debulking surgery (IDS). Each residual disease threshold is considered as a separate prognostic factor.
We searched CENTRAL (2021, Issue 8), MEDLINE via Ovid (to 30 August 2021) and Embase via Ovid (to 30 August 2021).
We included survival data from studies of at least 100 women with advanced EOC after primary surgery. Residual disease was assessed as a prognostic factor in multivariate prognostic models. We excluded studies that reported fewer than 100 women, women with concurrent malignancies or studies that only reported unadjusted results. Women were included into two distinct groups: those who received PDS followed by platinum-based chemotherapy and those who received IDS, analysed separately. We included studies that reported all RD thresholds after surgery, but the main thresholds of interest were microscopic RD (labelled NMRD), RD 0.1 cm to 1 cm (small-volume residual disease (SVRD)) and RD > 1 cm (large-volume residual disease (LVRD)).
Two review authors independently abstracted data and assessed risk of bias. Where possible, we synthesised the data in meta-analysis. To assess the adequacy of adjustment factors used in multivariate Cox models, we used the 'adjustment for other prognostic factors' and 'statistical analysis and reporting' domains of the quality in prognosis studies (QUIPS) tool. We also made judgements about the certainty of the evidence for each outcome in the main comparisons, using GRADE. We examined differences between FIGO stages III and IV for different thresholds of RD after primary surgery. We considered factors such as age, grade, length of follow-up, type and experience of surgeon, and type of surgery in the interpretation of any heterogeneity. We also performed sensitivity analyses that distinguished between studies that included NMRD in RD categories of < 1 cm and those that did not. This was applicable to comparisons involving RD < 1 cm with the exception of RD < 1 cm versus NMRD. We evaluated women undergoing PDS and IDS in separate analyses.
We found 46 studies reporting multivariate prognostic analyses, including RD as a prognostic factor, which met our inclusion criteria: 22,376 women who underwent PDS and 3697 who underwent IDS, all with varying levels of RD. While we identified a range of different RD thresholds, we mainly report on comparisons that are the focus of a key area of clinical uncertainty (involving NMRD, SVRD and LVRD). The comparison involving any visible disease (RD > 0 cm) and NMRD was also important. SVRD versus NMRD in a PDS setting In PDS studies, most showed an increased risk of death in all RD groups when those with macroscopic RD (MRD) were compared to NMRD. Women who had SVRD after PDS had more than twice the risk of death compared to women with NMRD (hazard ratio (HR) 2.03, 95% confidence interval (CI) 1.80 to 2.29; I2 = 50%; 17 studies; 9404 participants; moderate-certainty). The analysis of progression-free survival found that women who had SVRD after PDS had nearly twice the risk of death compared to women with NMRD (HR 1.88, 95% CI 1.63 to 2.16; I2 = 63%; 10 studies; 6596 participants; moderate-certainty). LVRD versus SVRD in a PDS setting When we compared LVRD versus SVRD following surgery, the estimates were attenuated compared to NMRD comparisons. All analyses showed an overall survival benefit in women who had RD < 1 cm after surgery (HR 1.22, 95% CI 1.13 to 1.32; I2 = 0%; 5 studies; 6000 participants; moderate-certainty). The results were robust to analyses of progression-free survival. SVRD and LVRD versus NMRD in an IDS setting The one study that defined the categories as NMRD, SVRD and LVRD showed that women who had SVRD and LVRD after IDS had more than twice the risk of death compared to women who had NMRD (HR 2.09, 95% CI 1.20 to 3.66; 310 participants; I2 = 56%, and HR 2.23, 95% CI 1.49 to 3.34; 343 participants; I2 = 35%; very low-certainty, for SVRD versus NMRD and LVRD versus NMRD, respectively). LVRD versus SVRD + NMRD in an IDS setting Meta-analysis found that women who had LVRD had a greater risk of death and disease progression compared to women who had either SVRD or NMRD (HR 1.60, 95% CI 1.21 to 2.11; 6 studies; 1572 participants; I2 = 58% for overall survival and HR 1.76, 95% CI 1.23 to 2.52; 1145 participants; I2 = 60% for progression-free survival; very low-certainty). However, this result is biased as in all but one study it was not possible to distinguish NMRD within the < 1 cm thresholds. Only one study separated NMRD from SVRD; all others included NMRD in the SVRD group, which may create bias when comparing with LVRD, making interpretation challenging. MRD versus NMRD in an IDS setting Women who had any amount of MRD after IDS had more than twice the risk of death compared to women with NMRD (HR 2.11, 95% CI 1.35 to 3.29, I2 = 81%; 906 participants; very low-certainty).
In a PDS setting, there is moderate-certainty evidence that the amount of RD after primary surgery is a prognostic factor for overall and progression-free survival in women with advanced ovarian cancer. We separated our analysis into three distinct categories for the survival outcome including NMRD, SVRD and LVRD. After IDS, there may be only two categories required, although this is based on very low-certainty evidence, as all but one study included NMRD in the SVRD category. The one study that separated NMRD from SVRD showed no improved survival outcome in the SVRD category, compared to LVRD. Further low-certainty evidence also supported restricting to two categories, where women who had any amount of MRD after IDS had a significantly greater risk of death compared to women with NMRD. Therefore, the evidence presented in this review cannot conclude that using three categories applies in an IDS setting (very low-certainty evidence), as was supported for PDS (which has convincing moderate-certainty evidence).
Bryant A
,Hiu S
,Kunonga PT
,Gajjar K
,Craig D
,Vale L
,Winter-Roach BA
,Elattar A
,Naik R
... -
《Cochrane Database of Systematic Reviews》