Elucidating the mechanisms of Buyang Huanwu Decoction in treating chronic cerebral ischemia: A combined approach using network pharmacology, molecular docking, and in vivo validation.

来自 PUBMED

作者:

Cao YYao WYang TYang MLiu ZLuo HCao ZChang RCui ZZuo HLiu B

展开

摘要:

This study aimed to explore the potential mechanisms of Buyang Huanwu Decoction (BHD) in regulating the AKT/TP53 pathway and reducing inflammatory responses for the treatment of chronic cerebral ischemia (CCI) using UHPLC-QE-MS combined with network pharmacology, molecular docking techniques, and animal experiment validation. Targets of seven herbal components in BHD, such as Astragalus membranaceus, Paeoniae Rubra Radix, and Ligusticum chuanxiong, were identified through TCMSP and HERB databases. CCI-related targets were obtained from DisGeNET and Genecards, with an intersection analysis conducted to determine shared targets between the disease and the herbal components. Functional enrichment analysis of these intersecting targets was performed. Networks of gene ontology and pathway associations with these targets were constructed and visualized. A pharmacological network involving intersecting genes and active components was delineated. A protein-protein interaction network was established for these intersecting targets and visualized using Cytoscape 3.9.1. The top five genes from the PPI network and their corresponding active components underwent molecular docking. Finally, the 2-vessel occlusion (2-VO) induced CCI rat model was treated with BHD, and the network pharmacology findings were validated using Western blot, RT-PCR, behavioral tests, laser speckle imaging, ELISA, HE staining, Nissl staining, LFB staining, and immunohistochemistry and immunofluorescence. After filtration and deduplication, 150 intersecting genes were obtained, with the top five active components by Degree value identified as Quercetin, Beta-Sitosterol, Oleic Acid, Kaempferol, and Succinic Acid. KEGG pathway enrichment analysis linked key target genes significantly with Lipid and atherosclerosis, AGE-RAGE signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. The PPI network highlighted ALB, IL-6, AKT1, TP53, and IL-1β as key protein targets. Molecular docking results showed the strongest binding affinity between ALB and Beta-Sitosterol. Behavioral tests using the Morris water maze indicated that both medium and high doses of BHD could enhance spatial memory in 2-VO model rats, with high-dose BHD being more effective. Laser speckle results showed that BHD at medium and high doses could facilitate CBF recovery in CCI rats, demonstrating a dose-response relationship. HE staining indicated that all doses of BHD could reduce neuronal damage in the cortex and hippocampal CA1 region to varying extents, with the highest dose being the most efficacious. Nissl staining showed that nimodipine and medium and high doses of BHD could alleviate Nissl body damage. LFB staining indicated that nimodipine and medium and high doses of BHD could reduce the pathological damage to fiber bundles and myelin sheaths in the internal capsule and corpus callosum of CCI rats. ELISA results showed that nimodipine and BHD at medium and high doses could decrease the levels of TNF-α, IL-6, IL-17, and IL-1β in the serum of CCI rats (p < 0.05). Immunohistochemistry and immunofluorescence demonstrated that BHD could activate the AKT signaling pathway and inhibit TP53 in treating CCI. Western blot and RT-PCR results indicated that nimodipine and all doses of BHD could upregulate Akt1 expression and downregulate Alb, Tp53, Il-1β, and Il-6 expression in the hippocampus of CCI rats to varying degrees (p < 0.05). BHD exerts therapeutic effects in the treatment of CCI by regulating targets, such as AKT1, ALB, TP53, IL-1β, and IL-6, and reducing inflammatory responses.

收起

展开

DOI:

10.1016/j.phymed.2024.155820

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(350)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读