Generating 3D images of VMAT plans for predictive models and activation maps associated with plan deliverability.

来自 PUBMED

作者:

Cho HLee JSKim JSKim DChang JSByun HKLee IJKim YBKim CLee HKim H

展开

摘要:

Intensity modulation with dynamic multi-leaf collimator (MLC) and monitor unit (MU) changes across control points (CPs) characterizes volumetric modulated arc therapy (VMAT). The increased uncertainty in plan deliverability required patient-specific quality assurance (PSQA), which remained inefficient upon Quality Assurance (QA) failure. To prevent waste before QA, plan complexity metrics (PCMs) and machine learning models with the metrics were generated, which were lack of providing CP-specific information upon QA failures. By generating 3D images from digital imaging and comminications in medicine in radiation therapy (DICOM RT) plan, we proposed a predictive model that can estimate the deliverability of VMAT plans and visualize CP-specific regions associated with plan deliverability. The patient cohort consisted of 259 and 190 cases for left- and right-breast VMAT treatments, which were split into 235 and 166 cases for training and 24 cases from each treatment for testing the networks. Three-channel 3D images generated from DICOM RT plans were fed into a DenseNet-based deep learning network. To reflect VMAT plan complexity as an image, the first two channels described MLC and MU variations between two consecutive CPs, while the last channel assigned the beam field size. The network output was defined as binary classified PSQA results, indicating deliverability. The predictive performance was assessed by accuracy, sensitivity, specificity, F1-score, and area under the curve (AUC). The gradient-weighted class activation map (Grad-CAM) highlighted the regions of CPs in VMAT plans associated with deliverability, compared against PCMs by Spearman correlation. The DenseNet-based predictive model yielded AUCs of 92.2% and 93.8%, F1-scores of 97.0% and 93.8% and accuracies of 95.8% and 91.7% for the left- and right-breast VMAT cases. Additionally, the specificity of 87.5% for both cases indicated that the predictive model accurately detected QA failing cases. The activation maps significantly differentiated QA failing-labeled from passing-labeled classes for the non-deliverable cases. The PCM with the highest correlation to the Grad-CAM varied from patient cases, implying that plan deliverability would be considered patient-specific. This work demonstrated that the deep learning-based network based on visualization of dynamic VMAT plan information successfully predicted plan deliverability, which also provided control-point specific planning parameter information associated with plan deliverability in a patient-specific manner.

收起

展开

DOI:

10.1002/mp.17298

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(103)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读