Invasive fractional-flow-reserve prediction by coronary CT angiography using artificial intelligence vs. computational fluid dynamics software in intermediate-grade stenosis.
Coronary computed angiography (CCTA) with non-invasive fractional flow reserve (FFR) calculates lesion-specific ischemia when compared with invasive FFR and can be considered for patients with stable chest pain and intermediate-grade stenoses according to recent guidelines. The objective of this study was to compare a new CCTA-based artificial-intelligence deep-learning model for FFR prediction (FFRAI) to computational fluid dynamics CT-derived FFR (FFRCT) in patients with intermediate-grade coronary stenoses with FFR as reference standard. The FFRAI model was trained with curved multiplanar-reconstruction CCTA images of 500 stenotic vessels in 413 patients, using FFR measurements as the ground truth. We included 37 patients with 39 intermediate-grade stenoses on CCTA and invasive coronary angiography, and with FFRCT and FFR measurements in this retrospective proof of concept study. FFRAI was compared with FFRCT regarding the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for predicting FFR ≤ 0.80. Sensitivity, specificity, PPV, NPV, and diagnostic accuracy of FFRAI in predicting FFR ≤ 0.80 were 91% (10/11), 82% (23/28), 67% (10/15), 96% (23/24), and 85% (33/39), respectively. Corresponding values for FFRCT were 82% (9/11), 75% (21/28), 56% (9/16), 91% (21/23), and 77% (30/39), respectively. Diagnostic accuracy did not differ significantly between FFRAI and FFRCT (p = 0.12). FFRAI performed similarly to FFRCT for predicting intermediate-grade coronary stenoses with FFR ≤ 0.80. These findings suggest FFRAI as a potential non-invasive imaging tool for guiding therapeutic management in these stenoses.
Peters B
,Paul JF
,Symons R
,Franssen WMA
,Nchimi A
,Ghekiere O
... -
《-》
Artificial intelligence-enhanced detection of subclinical coronary artery disease in athletes: diagnostic performance and limitations.
This study evaluates the diagnostic performance of artificial intelligence (AI)-based coronary computed tomography angiography (CCTA) for detecting coronary artery disease (CAD) and assessing fractional flow reserve (FFR) in asymptomatic male marathon runners.
We prospectively recruited 100 asymptomatic male marathon runners over the age of 45 for CAD screening. CCTA was analyzed using AI models (CorEx and Spimed-AI) on a local server. The models focused on detecting significant CAD (≥ 50% diameter stenosis, CAD-RADS 3, 4, or 5) and distinguishing hemodynamically significant stenosis (FFR ≤ 0.8) from non-significant stenosis (FFR > 0.8). Statistical analysis included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy.
The AI model demonstrated high sensitivity, with 91.2% for any CAD and 100% for significant CAD, and high NPV, with 92.7% for any CAD and 100% for significant CAD. The diagnostic accuracy was 73.4% for any CAD and 90.4% for significant CAD. However, the PPV was lower, particularly for significant CAD (25.0%), indicating a higher incidence of false positives.
AI-enhanced CCTA is a valuable non-invasive tool for detecting CAD in asymptomatic, low-risk populations. The AI model exhibited high sensitivity and NPV, particularly for identifying significant stenosis, reinforcing its potential role in screening. However, limitations such as a lower PPV and overestimation of disease indicate that further refinement of AI algorithms is needed to improve specificity. Despite these challenges, AI-based CCTA offers significant promise when integrated with clinical expertise, enhancing diagnostic accuracy and guiding patient management in low-risk groups.
Kübler J
,Brendel JM
,Küstner T
,Walterspiel J
,Hagen F
,Paul JF
,Nikolaou K
,Gassenmaier S
,Tsiflikas I
,Burgstahler C
,Greulich S
,Winkelmann MT
,Krumm P
... -
《-》
The value of fractional flow reserve based on coronary computed tomography angiography with low-dose contrast agent in noninvasive diagnosis of coronary artery disease.
The study aimed, using invasive coronary angiography (ICA) as the gold standard, to investigate the noninvasive diagnostic value of flow reserve fraction derived from coronary computed tomography angiography (CCTA) with low-dose contrast agent in coronary artery disease (CAD).
A total of 163 patients with clinical symptoms related to CAD were enrolled between 1 January 2022 and 30 January 2023. The patients received CCTA with a low dose of contrast agent to rule out CAD. If significant (CCTA ≥ 50%) stenosis is suspected, ICA is performed to further evaluate the CCTA for coronary lesions. CT-FFR is calculated from the CCTA dataset using a machine learning-based algorithm. Compared with ICA as a reference standard, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of low-dose contrast agent CT-FFR in the diagnosis of myocardial ischemia were calculated. Coronary lesions with CT-FFR ≤0.80 were defined as hemodynamically significant.
Obstructive CAD was excluded by low-contrast CCTA in 87 of 163 patients (53.7%). In the remaining 75 patients (42.35%), at least one coronary artery stenosis was greater than 50%. The accuracy, sensitivity, specificity, PPV, and NPV of low-dose contrast agent CT-FFR on a patient-based evaluation in diagnosing CAD were 93.06, 93.44, 90.01, 98.28, and 71.43%, respectively (Kappa = 0.759). The accuracy, sensitivity, specificity, PPV, and NPV of low-dose contrast agent CT-FFR on a vessel-based evaluation in diagnosing CAD were 86.72, 82.76, 91.58, 92.31, and 81.31%, respectively (Kappa = 0.735). Pearson correlation analysis showed that the ICA examination had a good correlation with CT-FFR value of low-dose contrast media ( r = 0.731, P < 0.01). Moreover, in 81.31% of cases, additional analysis of CT-FFR correctly excluded the hemodynamic significance of stenosis.
CT-FFR based on low-dose contrast agent CCTA is a very promising noninvasive approach to exclude hemodynamically significant coronary artery stenosis in patients with suspected coronary heart disease while reducing renal burden and helping to reduce the rate of ICA in this high-risk population.
Wang Z
,Luan X
,Zhang Q
,Chu C
,Xu X
,Chai H
,Song P
... -
《-》
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
Survival estimation for patients with symptomatic skeletal metastases ideally should be made before a type of local treatment has already been determined. Currently available survival prediction tools, however, were generated using data from patients treated either operatively or with local radiation alone, raising concerns about whether they would generalize well to all patients presenting for assessment. The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA), trained with institution-based data of surgically treated patients, and the Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy model (METSSS), trained with registry-based data of patients treated with radiotherapy alone, are two of the most recently developed survival prediction models, but they have not been tested on patients whose local treatment strategy is not yet decided.
(1) Which of these two survival prediction models performed better in a mixed cohort made up both of patients who received local treatment with surgery followed by radiotherapy and who had radiation alone for symptomatic bone metastases? (2) Which model performed better among patients whose local treatment consisted of only palliative radiotherapy? (3) Are laboratory values used by SORG-MLA, which are not included in METSSS, independently associated with survival after controlling for predictions made by METSSS?
Between 2010 and 2018, we provided local treatment for 2113 adult patients with skeletal metastases in the extremities at an urban tertiary referral academic medical center using one of two strategies: (1) surgery followed by postoperative radiotherapy or (2) palliative radiotherapy alone. Every patient's survivorship status was ascertained either by their medical records or the national death registry from the Taiwanese National Health Insurance Administration. After applying a priori designated exclusion criteria, 91% (1920) were analyzed here. Among them, 48% (920) of the patients were female, and the median (IQR) age was 62 years (53 to 70 years). Lung was the most common primary tumor site (41% [782]), and 59% (1128) of patients had other skeletal metastases in addition to the treated lesion(s). In general, the indications for surgery were the presence of a complete pathologic fracture or an impending pathologic fracture, defined as having a Mirels score of ≥ 9, in patients with an American Society of Anesthesiologists (ASA) classification of less than or equal to IV and who were considered fit for surgery. The indications for radiotherapy were relief of pain, local tumor control, prevention of skeletal-related events, and any combination of the above. In all, 84% (1610) of the patients received palliative radiotherapy alone as local treatment for the target lesion(s), and 16% (310) underwent surgery followed by postoperative radiotherapy. Neither METSSS nor SORG-MLA was used at the point of care to aid clinical decision-making during the treatment period. Survival was retrospectively estimated by these two models to test their potential for providing survival probabilities. We first compared SORG to METSSS in the entire population. Then, we repeated the comparison in patients who received local treatment with palliative radiation alone. We assessed model performance by area under the receiver operating characteristic curve (AUROC), calibration analysis, Brier score, and decision curve analysis (DCA). The AUROC measures discrimination, which is the ability to distinguish patients with the event of interest (such as death at a particular time point) from those without. AUROC typically ranges from 0.5 to 1.0, with 0.5 indicating random guessing and 1.0 a perfect prediction, and in general, an AUROC of ≥ 0.7 indicates adequate discrimination for clinical use. Calibration refers to the agreement between the predicted outcomes (in this case, survival probabilities) and the actual outcomes, with a perfect calibration curve having an intercept of 0 and a slope of 1. A positive intercept indicates that the actual survival is generally underestimated by the prediction model, and a negative intercept suggests the opposite (overestimation). When comparing models, an intercept closer to 0 typically indicates better calibration. Calibration can also be summarized as log(O:E), the logarithm scale of the ratio of observed (O) to expected (E) survivors. A log(O:E) > 0 signals an underestimation (the observed survival is greater than the predicted survival); and a log(O:E) < 0 indicates the opposite (the observed survival is lower than the predicted survival). A model with a log(O:E) closer to 0 is generally considered better calibrated. The Brier score is the mean squared difference between the model predictions and the observed outcomes, and it ranges from 0 (best prediction) to 1 (worst prediction). The Brier score captures both discrimination and calibration, and it is considered a measure of overall model performance. In Brier score analysis, the "null model" assigns a predicted probability equal to the prevalence of the outcome and represents a model that adds no new information. A prediction model should achieve a Brier score at least lower than the null-model Brier score to be considered as useful. The DCA was developed as a method to determine whether using a model to inform treatment decisions would do more good than harm. It plots the net benefit of making decisions based on the model's predictions across all possible risk thresholds (or cost-to-benefit ratios) in relation to the two default strategies of treating all or no patients. The care provider can decide on an acceptable risk threshold for the proposed treatment in an individual and assess the corresponding net benefit to determine whether consulting with the model is superior to adopting the default strategies. Finally, we examined whether laboratory data, which were not included in the METSSS model, would have been independently associated with survival after controlling for the METSSS model's predictions by using the multivariable logistic and Cox proportional hazards regression analyses.
Between the two models, only SORG-MLA achieved adequate discrimination (an AUROC of > 0.7) in the entire cohort (of patients treated operatively or with radiation alone) and in the subgroup of patients treated with palliative radiotherapy alone. SORG-MLA outperformed METSSS by a wide margin on discrimination, calibration, and Brier score analyses in not only the entire cohort but also the subgroup of patients whose local treatment consisted of radiotherapy alone. In both the entire cohort and the subgroup, DCA demonstrated that SORG-MLA provided more net benefit compared with the two default strategies (of treating all or no patients) and compared with METSSS when risk thresholds ranged from 0.2 to 0.9 at both 90 days and 1 year, indicating that using SORG-MLA as a decision-making aid was beneficial when a patient's individualized risk threshold for opting for treatment was 0.2 to 0.9. Higher albumin, lower alkaline phosphatase, lower calcium, higher hemoglobin, lower international normalized ratio, higher lymphocytes, lower neutrophils, lower neutrophil-to-lymphocyte ratio, lower platelet-to-lymphocyte ratio, higher sodium, and lower white blood cells were independently associated with better 1-year and overall survival after adjusting for the predictions made by METSSS.
Based on these discoveries, clinicians might choose to consult SORG-MLA instead of METSSS for survival estimation in patients with long-bone metastases presenting for evaluation of local treatment. Basing a treatment decision on the predictions of SORG-MLA could be beneficial when a patient's individualized risk threshold for opting to undergo a particular treatment strategy ranged from 0.2 to 0.9. Future studies might investigate relevant laboratory items when constructing or refining a survival estimation model because these data demonstrated prognostic value independent of the predictions of the METSSS model, and future studies might also seek to keep these models up to date using data from diverse, contemporary patients undergoing both modern operative and nonoperative treatments.
Level III, diagnostic study.
Lee CC
,Chen CW
,Yen HK
,Lin YP
,Lai CY
,Wang JL
,Groot OQ
,Janssen SJ
,Schwab JH
,Hsu FM
,Lin WH
... -
《-》