-
Betaine alleviates doxorubicin-related cardiotoxicity via suppressing oxidative stress and inflammation via the NLRP3/SIRT1 pathway.
Cardiotoxicity is one of the side effects of the anti-cancer drug doxorubicin (DOX) that limits its clinical application. Betaine (BT) is a natural agent with promising useful effects against inflammation and oxidative stress (OS). We assessed the effects of BT on DOX-induced cardiotoxicity in mice. Forty-two male NMRI mice were assigned to six groups: I: control; II: BT (200 mg/kg; orally, alone); III: DOX (2.5 mg/kg; six injections (ip)) for two weeks; IV, V, VI: BT (50 mg/kg, 100 mg/kg, and 200 mg/kg; orally, once a day for two weeks, respectively) plus DOX administration. The cardiac enzymes like cardiac troponin-I (cTn-I), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were assessed in serum. Oxidative/inflammatory markers like nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione level (GSH), and glutathione peroxidase (GPx) activities were determined in cardiac tissue. The expressions of NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin (IL)-1β, and silent information regulator 1 (SIRT1) proteins were also evaluated in cardiac tissue. The results indicated that DOX significantly increased LDH, CK-MB, cTn-I, MDA, and NO levels and also the caspase-1, NLRP3, and IL-1β expression. Furthermore, DOX caused a significant reduction in the GSH levels and SOD, CAT, GPX activities, and the expression of SIRT1 protein in heart tissue. However, BT significantly improved all studied parameters. The findings were confirmed by histopathological assessments of the heart. BT can protect against DOX-induced cardiotoxicity by suppressing the activation of NLRP3 and OS by stimulating the SIRT1 pathway.
Mohammadpour YH
,Khodayar MJ
,Khorsandi L
,Kalantar H
... -
《-》
-
Cardioprotective Potential of Moringa Oleifera Leaf Extract Loaded Niosomes Nanoparticles - Against Doxorubicin Toxicity In Rats.
Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases.
The current study is intended to explore the cardioprotective effect of ethanolic Moringa oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart.
It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status.
Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.
Mohamad EA
,Ahmed SM
,Masoud MA
,Mohamed FA
,Mohammed HS
... -
《-》
-
Irvingia gabonensis Seed Extract: An Effective Attenuator of Doxorubicin-Mediated Cardiotoxicity in Wistar Rats.
Cardiotoxicity as an off-target effect of doxorubicin therapy is a major limiting factor for its clinical use as a choice cytotoxic agent. Seeds of Irvingia gabonensis have been reported to possess both nutritional and medicinal values which include antidiabetic, weight losing, antihyperlipidemic, and antioxidative effects. Protective effects of Irvingia gabonensis ethanol seed extract (IGESE) was investigated in doxorubicin (DOX)-mediated cardiotoxicity induced with single intraperitoneal injection of 15 mg/kg of DOX following the oral pretreatments of Wistar rats with 100-400 mg/kg/day of IGESE for 10 days, using serum cardiac enzyme markers (cardiac troponin I (cTI) and lactate dehydrogenase (LDH)), cardiac tissue oxidative stress markers (catalase (CAT), malonyldialdehyde (MDA), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH)), and cardiac histopathology endpoints. In addition, both qualitative and quantitative analyses to determine IGESE's secondary metabolites profile and its in vitro antioxidant activities were also conducted. Results revealed that serum cTnI and LDH were significantly elevated by the DOX treatment. Similarly, activities of tissue SOD, CAT, GST, and GSH levels were profoundly reduced, while GPx activity and MDA levels were profoundly increased by DOX treatment. These biochemical changes were associated with microthrombi formation in the DOX-treated cardiac tissues on histological examination. However, oral pretreatments with 100-400 mg/kg/day of IGESE dissolved in 5% DMSO in distilled water significantly attenuated increases in the serum cTnI and LDH, prevented significant alterations in the serum lipid profile and the tissue activities and levels of oxidative stress markers while improving cardiovascular disease risk indices and DOX-induced histopathological lesions. The in vitro antioxidant studies showed IGESE to have good antioxidant profile and contained 56 major secondary metabolites prominent among which are γ-sitosterol, Phytol, neophytadiene, stigmasterol, vitamin E, hexadecanoic acid and its ethyl ester, Phytyl palmitate, campesterol, lupeol, and squalene. Overall, both the in vitro and in vivo findings indicate that IGESE may be a promising prophylactic cardioprotective agent against DOX-induced cardiotoxicity, at least in part mediated via IGESE's antioxidant and free radical scavenging and antithrombotic mechanisms.
Olorundare O
,Adeneye A
,Akinsola A
,Kolo P
,Agede O
,Soyemi S
,Mgbehoma A
,Okoye I
,Albrecht R
,Mukhtar H
... -
《-》
-
Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats.
Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1β; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1β and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.
Abohashem RS
,Ahmed HH
,Sayed AH
,Effat H
... -
《-》
-
Achillea millefolium ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation in rats.
Doxorubicin (Dox) is a potent anticancer medication. However, due to nephrotoxicity, its clinical application is restricted. Achillea millefolium (AM) is a plant used in traditional medicine to treat several conditions, including kidney disorders. The aim of this work was to investigate the preventative properties of AM extract (AME) and their mechanisms against nephrotoxicity caused by Dox in rats.
The rats were assigned randomly to six groups, including a control group, Dox group (5 mg/kg/week via i.p. for 4 weeks), two groups receiving AME (100 or 200 mg/kg, orally for 28 days), and the last two groups receiving Dox + AME (100 or 200 mg/kg, orally for 4 weeks). After the treatment period concluded, samples of blood and renal tissue were collected for analysis. Serum creatinine, urea, and uric acid levels were used to determine nephrotoxicity biochemically. In renal tissue samples, superoxide dismutase (SOD), catalase, glutathione (GSH), glutathione peroxidase (GPx), total antioxidant capacity (TAC), nitric oxide (NOx), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and nuclear factor kappa B (NF-κB) were measured. Histopathological analysis of the kidneys was also performed.
Dox caused a considerable increase in kidney function parameters and the occurrence of histological changes, which were significantly reversed by AME treatment. Mechanistically, Dox caused renal oxidative stress by raising malondialdehyde and NOx levels while lowering SOD, GSH, GPx, and TAC. It also caused inflammation via the stimulation of proinflammatory cytokines in renal tissues. Conversely, the treatment of AME mitigated Dox-evoked abnormalities in the above-mentioned tests.
AME could protect against nephrotoxicity caused by Dox by reducing oxidative stress, stimulating antioxidant mechanisms, and suppressing proinflammatory cytokines, suggesting that AME may be useful as an adjuvant therapy for Dox-induced nephrotoxicity.
Shaiea M
,Dong Y
,Alomaisi S
,Al-Mahbashi H
,Zhang G
,Wang C
... -
《-》