Efficacy of repetitive transcranial magnetic stimulation on post-stroke cognitive impairment: A systematic and a network meta-analysis.
This study aimed to evaluate the efficacy of different repetitive transcranial magnetic stimulation (rTMS) modes in stroke patients with cognitive impairment, and to rank the best option according to the outcome measures.
Literature was searched in PubMed, Cochrane Library, Web of Science, Embase, SinoMed, China National Knowledge Infrastructure, Wanfang Database, and VIP Database, from database inception to September 2023. We included randomized controlled trials (RCTs) investigating the efficacy of all rTMS modes for post-stroke cognitive impairment. The selected studies assessed at least one of the following outcome measures: Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), P300 latency and amplitude, and modified Barthel Index (MBI) or BI. Two researchers independently conducted data extraction. Quality assessment was performed using RevMan 5.3 software based on the Cochrane Collaboration's tool, and statistical analysis was conducted by GeMTC 0.14.3 software and Stata 17.0 software.
The network meta-analysis included 74 RCTs with a total of 5478 patients. The best probability ranking indicated that intermittent theta burst stimulation (iTBS) was the most effective in enhancing MoCA, MMSE and MBI scores (85%, 54%, 42%, respectively), followed by 10 Hz rTMS (79%, 50%, 39%, respectively), for P300 amplitude, ≤1 Hz rTMS was ranked first (52%).
The current limited evidence suggests that iTBS may be the optimal approach for improving cognitive and daily life abilities of stroke patients, followed by 10 Hz rTMS, ≤1 Hz rTMS may be the preferred option for enhancing P300 amplitude.
PROSPERO 2023 CRD42023424771 available from: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=424771.
Liu X
,Li H
,Yang S
,Xiao Z
,Li Q
,Zhang F
,Ma J
... -
《-》
Effects of different modalities of transcranial magnetic stimulation on post-stroke cognitive impairment: a network meta-analysis.
The study aimed to evaluate, using a network meta-analysis, the effects of different transcranial magnetic stimulation (TMS) modalities on improving cognitive function after stroke.
Computer searches of the Cochrane Library, PubMed, Web of Science, Embass, Google Scholar, CNKI, and Wanfang databases were conducted to collect randomized controlled clinical studies on the use of TMS to improve cognitive function in stroke patients, published from the time of database construction to November 2023.
A total of 29 studies and 2123 patients were included, comprising five interventions: high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), intermittent theta rhythm stimulation (iTBS), sham stimulation (SS), and conventional rehabilitation therapy (CRT). A reticulated meta-analysis showed that the rankings of different TMS intervention modalities in terms of the Montreal Cognitive Assessment (MoCA) scores, Mini-Mental State Examination scores (MMSE), and Modified Barthel Index (MBI) scores were: HF-rTMS > LF-rTMS > iTBS > SS > CRT; the rankings of different TMS intervention modalities in terms of the event-related potential P300. amplitude scores were HF-rTMS > LF-rTMS > iTBS > CRT > SS; the rankings of different TMS intervention modalities in terms of the P300 latency scores were: iTBS > HF-rTMS > LF-rTMS > SS > CRT. Subgroup analyses of secondary outcome indicators showed that HF-rTMS significantly improved Rivermead Behavior Memory Test scores and Functional Independence Measurement-Cognitive scores.
High-frequency TMS stimulation has a better overall effect on improving cognitive functions and activities of daily living, such as attention and memory in stroke patients.
Yang Y
,Chang W
,Ding J
,Xu H
,Wu X
,Ma L
,Xu Y
... -
《-》
Comparative Efficacy of Different Repetitive Transcranial Magnetic Stimulation Protocols for Stroke: A Network Meta-Analysis.
Although repetitive transcranial magnetic stimulation (rTMS) has been proven to be effective in the upper limb motor function and activities of daily living (ADL), the therapeutic effects of different stimulation protocols have not been effectively compared. To fill this gap, this study carried out the comparison of the upper limb motor function and ADL performance of patients with stroke through a network meta-analysis.
Randomized controlled trials (RCTs) on the rTMS therapy for stroke were searched from various databases, including PubMed, web of science, Embase, Cochrane Library, ProQuest, Wanfang database, the China National Knowledge Infrastructure (CNKI), and VIP information (www.cqvip.com). The retrieval period was from the establishment of the database to January 2021. Meanwhile, five independent researchers were responsible for the study selection, data extraction, and quality evaluation. The outcome measures included Upper Extremity Fugl-Meyer Assessment (UE-FMA), Wolf Motor Function Test (WMFT), Modified Barthel Index (MBI), the National Institute of Health stroke scale (NIHSS), and adverse reactions. The Gemtc 0.14.3 software based on the Bayesian model framework was used for network meta-analysis, and funnel plots and network diagram plots were conducted using Stata14.0 software.
Ninety-five studies and 5,016 patients were included ultimately. The intervention measures included were as follows: placebo, intermittent theta-burst stimulation (ITBS), continuous theta-burst stimulation (CTBS),1 Hz rTMS,3-5 Hz rTMS, and ≥10 Hz rTMS. The results of the network meta-analysis show that different rTMS protocols were superior to placebo in terms of UE-FMA, NIHSS, and MBI outcomes. In the probability ranking results, ≥10 Hz rTMS ranked first in UE-FMA, WMFT, and MBI. For the NIHSS outcome, the ITBS ranked first and 1 Hz rTMS ranked the second. The subgroup analyses of UE-FMA showed that ≥10 Hz rTMS was the best stimulation protocol for mild stroke, severe stroke, and the convalescent phase, as well as ITBS was for acute and subacute phases. In addition, it was reported in 13 included studies that only a few patients suffered from adverse reactions, such as headache, nausea, and emesis.
Overall, ≥10 Hz rTMS may be the best stimulation protocol for improving the upper limb motor function and ADL performance in patients with stroke. Considering the impact of stroke severity and phase on the upper limb motor function, ≥10 Hz rTMS may be the preferred stimulation protocol for mild stroke, severe stroke, and for the convalescent phase, and ITBS for acute and subacute phases.
https://www.crd.york.ac.uk/prospero/, identifier [CRD42020212253].
Xia Y
,Xu Y
,Li Y
,Lu Y
,Wang Z
... -
《Frontiers in Neurology》
The effect of transcranial magnetic stimulation on cognitive function in post-stroke patients: a systematic review and meta-analysis.
Transcranial magnetic stimulation (TMS) is considered as a promising treatment option for post-stroke cognitive impairment (PSCI).Some meta-analyses have indicated that TMS can be effective in treating cognitive decline in stroke patients, but the quality of the studies included and the methodologies employed were less than satisfactory. Thus, this meta-analysis aimed to evaluate the efficacy and safety of TMS for treating post-stroke cognitive impairment.
We searched online databases like PubMed, Embase, Cochrane Library, and Web of Science to retrieve randomized controlled trials (RCTs) of TMS for the treatment of patients with PSCI. Two independent reviewers identified relevant literature, extracted purpose-specific data, and the Cochrane Risk of Bias Assessment Scale was utilized to assess the potential for bias in the literature included in this study. Stata 17.0 software was used for data analysis.
A total of 10 studies involving 414 patients were included. The results of the meta-analysis showed that TMS was significantly superior to the control group for improving the overall cognitive function of stroke patients (SMD = 1.17, 95% CI [0.59, 1.75], I2 = 86.1%, P < 0.001). Subgroup analyses revealed that high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), and intermittent theta burst stimulation (iTBS) all have a beneficial effect on the overall cognitive function of stroke patients. However, another subgroup analysis failed to demonstrate any significant advantage of TMS over the control group in terms of enhancing scores on the Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and Rivermead Behavioral Memory Test (RBMT) scales. Nonetheless, TMS demonstrated the potential to enhance the recovery of activities of daily living in stroke patients, as indicated by the Modified Barthel Index (MBI) (SMD = 0.76; 95% CI [0.22, 1.30], I2 = 52.6%, P = 0.121).
This meta-analysis presents evidence supporting the safety and efficacy of TMS as a non-invasive neural modulation tool for improving global cognitive abilities and activities of daily living in stroke patients. However, given the limited number of included studies, further validation of these findings is warranted through large-scale, multi-center, double-blind, high-quality randomized controlled trials.
CRD42022381034.
Zhu M
,Huang S
,Chen W
,Pan G
,Zhou Y
... -
《BMC Neurology》